

DFSMS/MVS Version 1 Release 5 IBM

Macro Instructions for Data Sets

 SC26-4913-04

DFSMS/MVS Version 1 Release 5 IBM

Macro Instructions for Data Sets

 SC26-4913-04

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xiii.

Fifth Edition (March 1999)

This edition applies to Version 1 Release 5 of DFSMS/MVS (5695-DF1), Release 7 of OS/390 (5647-A01), and any subsequent
releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

 U.S.A.

Or you can send your comments electronically to starpubs@vnet.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1976, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xiii
Programming Interface Information . xiii
Trademarks . xiv

About This Book . xv
Preparing Your Books for Use . xvi

To Create the VSAM Book . xvi
To Create the Non-VSAM Book . xvii

Required Product Knowledge . xvii
How to Tell if this Book is Current . xvii
Referenced Publications . xviii
References to Product Names Used in DFSMS/MVS Publications xix

Summary of Changes . xxi
Fifth Edition, March 1999 . xxi
Fourth Edition, June 1997 . xxi
Third Edition, December 1995 . xxii

Service Update to Version 1 Release 3, September 1996 xxii

Part 1. VSAM Macro Instructions . 1

Chapter 1. Introduction to VSAM Programming 3

Chapter 2. Notational Conventions . 5

Chapter 3. VSAM Macro Descriptions and Examples 7
Subparameters with GENCB, MODCB, SHOWCB, and TESTCB 7
Use of List, Execute, and Generate Forms of VSAM Macros 8

List-Form Keyword . 9
Execute-Form Keyword . 10
Generate-Form Keyword . 10

Examples of Generate, List, and Execute Forms 10
Example: Generate Form (Reentrant) . 11
Example: Remote-List Form (Reentrant) . 11
Example: Execute Form (Reentrant) . 12

ACB—Generate an Access Method Control Block at Assembly Time 12
Example 1: ACB Macro . 20
Example 2: ACB Macro . 21

BLDVRP—Build VSAM Resource Pool . 21
Example 1: Obtaining an LSR Pool above 16 Megabytes 25
Example 2: Request for Separate Data and Index Resource Pools 25
BLDVRP—List Form . 26
BLDVRP—Execute Form . 26

CHECK—Wait for Completion of a Request . 27
Example 1: Check Return Codes after an Asynchronous Request 27
Example 2: Check Return Codes after a Synchronous Request 28
Example 3: Overlap Processing . 28
Example 4: Suspend a Request for Many Records 29

CLOSE—Disconnect Program and Data . 30

 Copyright IBM Corp. 1976, 1999 iii

Example: CLOSE Macro . 31
DLVRP—Delete VSAM Resource Pool . 31

Example: DLVRP Macro . 32
DLVRP—Execute Form . 32

ENDREQ—Terminate a Request . 33
Example: Release Positioning for Another Request 33

ERASE—Delete a Record . 34
Example 1: Keyed-Direct Deletion (KSDS, RRDS) 35
Example 2: Addressed-Sequential Deletion (ESDS, KSDS) 36

EXLST—Generate an Exit List at Assembly Time 37
Example: EXLST Macro . 38

GENCB—Generate an Access Method Control Block at Execution Time . . . 39
Example: GENCB Macro (Generate an Access Method Control Block) . . . 44
Example: GENCB Macro (Generate an Access Method Control Block) . . . 45

GENCB—Generate an Exit List at Execution Time 46
Example: GENCB Macro (Generate an Exit List) 48

GENCB—Generate a Request Parameter List at Execution Time 49
Building a Chain of Request Parameter Lists 53
Example: GENCB Macro (Generate a Request Parameter List) 54
Example: GENCB Macro (Generate a Request Parameter List) 54
GENCB—List Form . 55
GENCB—Execute Form . 56
GENCB—Generate Form . 56

GET—Retrieve a Record . 56
Example 1: Keyed-Sequential Retrieval—Forward (KSDS, RRDS) 56
Example 2: Keyed-Sequential Retrieval—Backward (KSDS, RRDS) 57
Example 3: Skip-Sequential Retrieval (KSDS, Variable-length RRDS) 58
Example 4: Addressed-Sequential Retrieval (ESDS) 59
Example 5: Sequential Retrieval for a Fixed-Length RRDS 60
Example 6: Keyed-Direct Retrieval (KSDS, RRDS) 61
Example 7: Addressed-Direct Retrieval (ESDS, KSDS) 62
Example 8: Switch from Direct to Sequential Retrieval 62

IDALKADD—RLS Record Locking . 64
MODCB—Modify an Access Method Control Block 66

Example: MODCB Macro (Modify an Access Method Control Block) 67
MODCB—Modify an Exit List . 67

Example: MODCB Macro (Modify an Exit List) 68
MODCB—Modify a Request Parameter List . 68

Example: MODCB Macro (Modify a Request Parameter List) 70
MODCB—List Form . 70
MODCB—Execute Form . 70
MODCB—Generate Form . 70

MRKBFR—Mark Buffer . 71
OPEN—Connect Program and Data . 72

Example 1: OPEN Macro Used to Open Two Data Sets 73
Example 2: OPEN Macro With a Parameter List Above 16 Megabytes . . . 73

POINT—Position for Access . 73
Example: Position with POINT . 74

PUT—Write a Record . 74
Example 1: Keyed-Sequential Insertion (KSDS, Variable-Length RRDS) . . 75

RPL—Generate a Request Parameter List at Assembly Time 85
Example: RPL Macro . 91

SCHBFR—Search Buffer . 92
SHOWCAT—Display the Catalog . 93

iv DFSMS/MVS V1R5 Macro Instructions for Data Sets

SHOWCAT—Standard Form . 95
SHOWCAT—List Form . 99
SHOWCAT—Execute Form . 99
Expressions That Can Be Used for SHOWCAT 99

SHOWCB—Display Fields of an Access Method Control Block 101
Example 1: SHOWCB Macro (Display an Access Method Control Block) . 106
Example 2: SHOWCB Macro (Display an Exit List Address) 107

SHOWCB—Display Fields of an Exit List . 107
Example: SHOWCB Macro (Display the Length of an Exit List) 108

SHOWCB—Display Fields of a Request Parameter List 109
Example: SHOWCB Macro (Display a Physical Error Message) 111
SHOWCB—List Form . 111
SHOWCB—Execute Form . 112
SHOWCB—Generate Form . 112

TESTCB—Test a Field of an Access Method Control Block 113
Example: TESTCB Macro (Test for Data Set Attributes) 116

TESTCB—Test a Field of an Exit List . 116
Example: TESTCB Macro (Use a Branch Table) 118

TESTCB—Test a Field of a Request Parameter List 119
Example: TESTCB Macro (Test a Request Parameter List) 120
TESTCB—List Form . 120
TESTCB—Execute Form . 121
TESTCB—Generate Form . 121

VERIFY—Synchronize End of Data . 121
WRTBFR—Write Buffer . 122

Chapter 4. VSAM Macro Return and Reason Codes 125
OPEN Return and Reason Codes . 125
CLOSE Return and Reason Codes . 131
OPEN/CLOSE Message Area for Multiple Reason or Attention Messages . . 132

Message Area Header . 132
Message List . 133

Control Block Manipulation Macro Return and Reason Codes 135
Record Management Return and Reason Codes 137

Return Codes (RPLRTNCD) . 137
Component Codes (RPLCMPON) . 138
Reason Codes (RPLERRCD) . 139

Return Codes from Macros Used to Share Resources Among Data Sets . . 153
BLDVRP Return Codes . 154
DLVRP Return Codes . 154

End-of-Volume Return Codes . 155
SHOWCAT Return Codes . 155

Part 2. Non-VSAM Macro Instructions . 157

Chapter 5. Introduction to Non-VSAM Programming 159

Chapter 6. Notational Conventions . 161
Macro Format . 162

Rules for Register Usage . 164
31-Bit Addressing Mode . 165
Rules for Continuation Lines . 165

 Contents v

Chapter 7. Non-VSAM Macro Descriptions 167
DD Statements and Dynamic Allocation . 167
Data Above the 16MB Line . 167

| How to Supply an Exit Routine Above 16 MB 169
BLDL—Build a Directory Entry List (BPAM) 170

Completion Codes . 173
BSP—Backspace a Physical Record (BPAM, BSAM—Magnetic Tape and

DASD Only) . 173
Completion Codes . 175

BUILD—Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM, and
QSAM) . 176

BUILDRCD—Build a Buffer Pool and a Record Area (QSAM) 177
BUILDRCD—List Form . 178
BUILDRCD—Execute Form . 179

CHECK—Wait for Completion of a Request (BDAM, BISAM, BPAM, and
BSAM) . 179

CHKPT—Take a Checkpoint for Restart within a Job Step 182
CLOSE—Disconnect Program and Data (BDAM, BISAM, BPAM, BSAM,

QISAM, and QSAM) . 182
CLOSE—List Form . 185
CLOSE—Execute Form . 187
CLOSE Return Codes . 187

CNTRL—Control Directly Allocated Input/Output Device (BSAM and QSAM) 188
DCB—Construct a Data Control Block (BDAM) 191
DCB—Construct a Data Control Block (BISAM) 198
DCB—Construct a Data Control Block (BPAM) 203
DCB—Construct a Data Control Block (BSAM) 212
DCB—Construct a Data Control Block (QISAM) 232
DCB—Construct a Data Control Block (QSAM) 241
DCBD—Provide Symbolic Reference to Data Control Blocks (BDAM, BISAM,

BPAM, BSAM, QISAM, and QSAM) . 260
DCBE—(BSAM, QSAM, and BPAM) . 261
DESERV—Directory Entry Services (BPAM) 266

DESERV—Function=DELETE . 266
DESERV—Function=GET . 267
DESERV—Function=GET_ALL . 267
DESERV—Function=GET_NAMES . 268
DESERV—Function=RELEASE . 268
DESERV—Function=RENAME . 268
DESERV—Function=UPDATE . 268
DESERV—List Form . 269

DESERV Completion Codes . 276
Return Codes returned by the DESERV Macro 276
Reason Codes returned by the DESERV Macro 276

ESETL—End Sequential Retrieval (QISAM) 282
FEOV—Force End-of-Volume (BSAM and QSAM) 282
FIND—Establish the Beginning of a Data Set Member (BPAM) 283

FIND Completion Codes . 284
FREEBUF—Return a Buffer to a Pool (BDAM, BISAM, BPAM, and BSAM) . 285
FREEDBUF—Return a Dynamically Obtained Buffer (BDAM and BISAM) . . 285
FREEPOOL—Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,

and QSAM) . 286
GET—Obtain Next Logical Record (QISAM) 286
GET—Obtain Next Logical Record (QSAM) 287

vi DFSMS/MVS V1R5 Macro Instructions for Data Sets

GET Routine Exits . 290
GETBUF—Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM) 291
GETPOOL—Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM, and

QSAM) . 291
| IEWLCNVT—Convert Directory Entries (BPAM) 292
| Convert a PDSDE to a PMAR . 293
| Convert a PMAR to a PDSDE . 293
| IEWLCNVT Reason Codes . 296

ISITMGD—Is the Data Set System-Managed? (BPAM, BSAM, QSAM) . . . 297
ISITMGD—List Form . 299
ISITMGD—Execute Form . 300
ISITMGD Completion Codes . 300

MSGDISP—Displaying a Ready Message (BSAM, QSAM) 301
MSGDISP—List Form . 302
MSGDISP—Execute Form . 303
MSGDISP Completion Codes . 304

NOTE—Provide Relative Position (BPAM and BSAM—Tape and DASD Only) 305
NOTE Completion Codes . 307
If Type=ABS is Specified . 307
If Type=REL is Specified . 307

OPEN—Connect Program and Data (BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM) . 307

OPEN Return Codes . 312
OPEN—List Form . 312
OPEN—Execute Form . 314

PDAB—Construct a Parallel Data Access Block (QSAM) 314
PDABD—Provide Symbolic Reference to a Parallel Data Access Block

(QSAM) . 315
PDABD Symbolic Field Names . 315

POINT—Position for Access (BPAM and BSAM—Tape and DASD Only) . . 315
POINT Completion Codes . 319
If TYPE=ABS is Specified . 319
If TYPE=REL is Specified . 319

| POINT TYPE=ABS—List Form . 319
| POINT TYPE=ABS—Execute Form . 320

PRTOV—Test for Printer Carriage Overflow (BSAM and QSAM—Online
Printer and 3525 Card Punch) . 320

PUT—Write Next Record (QISAM) . 322
PUT Routine Exit . 323

PUT—Write Next Record (QSAM) . 323
PUT Routine Exit . 325

PUTX—Write a Record from an Existing Data Set (QISAM and QSAM) . . . 326
PUTX Routine Exit . 327

READ—Read a Block (BDAM) . 327
READ—Read a Block of Records (BISAM) . 329
READ—Read a Block (BPAM and BSAM) . 331
READ—Read a Block (Offset Read of Keyed Direct Data Set Using BSAM) 333

READ—List Form . 334
READ—Execute Form . 335

RELEX—Release Exclusive Control (BDAM) 336
RELEX Completion Codes . 336

RELSE—Release an Input Buffer (QISAM and QSAM Input) 337
SETL—Set Lower Limit of Sequential Retrieval (QISAM Input) 337

SETL Exit . 339

 Contents vii

SETPRT—Printer Setup (BSAM, QSAM, and EXCP) 339
3800 Printers and SYSOUT Data Sets . 339
Non-3800 Printers . 339
4248 Printers . 340
All Supported Devices . 340
SETPRT Return Codes . 347
Return Codes 0 to 14 . 348
Return Codes 18 to 50 . 350

SETPRT Reason Codes . 351
All 3800 Printers . 351
3800 Printers and the 4245 Printer . 352
All Non-3800 Printers . 353
SETPRT—List Form . 353
SETPRT—Execute Form . 355

STOW—Update Partitioned Data Set Directory (BPAM) 358
STOW Completion Codes . 362

SYNADAF—Perform SYNAD Analysis Function (BDAM, BISAM, BPAM,
BSAM, EXCP, QISAM, and QSAM) . 363

SYNADAF Completion Codes . 366
Message Buffer Format . 366

SYNADRLS—Release SYNADAF Buffer and Save Areas (BDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, and QSAM) 369

SYNADRLS Completion Codes . 369
SYNCDEV—Synchronize Device (BSAM, BPAM, QSAM, EXCP) 370

Tape Data Sets . 370
DASD Data Sets . 370
SYNCDEV—List Form . 372
SYNCDEV—Execute Form . 372
SYNCDEV Completion Codes . 373

TRUNC—Truncate Buffer (QSAM Output—Fixed- or Variable-Length Blocked
Records and BSAM) . 373

WAIT—Wait for One or More Events (BDAM, BISAM, BPAM, and BSAM) . 374
WRITE—Write a Block (BDAM) . 376
WRITE—Write a Logical Record or Block of Records (BISAM) 378
WRITE—Write a Block (BPAM and BSAM) . 380
WRITE—Write a Block (Create a Direct Data Set with BSAM) 382

WRITE Completion Codes—Write a Block (Create a Direct Data Set with
BSAM) . 384

WRITE—List Form . 385
WRITE—Execute Form . 386

XLATE—Translate to and from ASCII (BSAM and QSAM) 386

Appendixes . 389

Appendix A. Macros Available by Access Method 391

Appendix B. Non-VSAM Control Blocks . 393
Status Information Following an Input/Output Operation 393

Data Event Control Block . 393
Data Control Block Symbolic Field Names . 394
Data Control Block—Common Fields . 394
Data Control Block—BPAM, BSAM, QSAM . 395

Access Method Interface . 398

viii DFSMS/MVS V1R5 Macro Instructions for Data Sets

Direct Access Storage Device Interface . 399
Magnetic Tape Interface . 400
Card Reader, Card Punch Interface . 400
Printer Interface . 401
TSO Terminal Interface . 401

Data Control Block—ISAM . 401
Data Control Block—BDAM . 404

| Data Control Block Extension (DCBE) . 406

Appendix C. Control Characters . 407
Machine Code . 407
ISO/ANSI . 408
ISO/ANSI Record Control Word and Segment Control Word 409

Conversion of ISO/ANSI Record Control Word 409
Conversion of ISO/ANSI Segment Control Word 410

Appendix D. Index Processing Macros . 411
GETIX—Retrieve an Index Record . 411
PUTIX—Store an Index Record . 412

Appendix E. Selecting Logical Record Lengths and Block Sizes 413
Device Capacities . 413

Printers . 413
Card Readers and Card Punches . 414
Magnetic Tape Units . 414
Direct Access Storage Devices . 414

VSAM Usage of Space for Selected Devices 415
VSAM Usage of 3380 DASD Space . 416
VSAM Usage of 3390 DASD Space . 417
VSAM Usage of 9345 DASD Space . 418

Control Interval Size for Selected Devices . 419

Abbreviations . 421

Glossary . 425

Index . 435

 Contents ix

x DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Figures

1. Reentrant Programming . 11
2. MACRF Options . 16
3. OPTCD Options . 87
4. Interrelationship Among Catalog Entries 94
5. Operand Expressions for the SHOWCAT Macro 100
6. FIELDS Keyword Subparameters for an Access Method Control Block 102
7. FIELDS Keyword Subparameters for a Display Request Parameter List 110
8. Return Codes in Register 15 After OPEN 125
9. OPEN Reason Codes in the ACBERFLG Field of the ACB 126

10. Return Codes in Register 15 After CLOSE 131
11. CLOSE Reason Codes in the ACBERFLG Field of the ACB 131
12. Format of the Message Area Header . 133
13. Format of Individual Messages in Message List 134
14. Return Codes in Register 15 After Control Block Manipulation Macros 135
15. GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned in

Register 0 . 135
16. Return Code in Register 15 Following Asynchronous Request 138
17. Return Code in Register 15 Following Synchronous Request 138
18. Component Codes Provided in the RPL 139
19. Successful Completion Reason Codes in the Feedback Area of the

Request Parameter List . 139
20. Logical Error Reason Codes in the Feedback Area of the Request

Parameter List . 140
21. Positioning States of Reason Codes Listed for Sequential, Direct, and

Skip-Sequential Processing . 147
22. Physical Error Reason Codes in the Feedback Area of the Request

Parameter List . 150
23. Physical Error Message Format . 151
24. Physical Error Message Format . 152
25. Physical Error Message Format . 152
26. Return Codes in Register 15 After BLDVRP Request 154
27. Return Codes in Register 15 Following DLVRP Request 154
28. Return Codes in Register 15 Following End-of-Volume 155
29. SHOWCAT Return Codes . 155
30. Using a DCB exit list when the application is above the line. 170
31. DESERV keyword parameters by function 269
32. DESERV keyword parameters by function 270
33. Buffer size calculation for GET function. 271
34. DESERV Return Codes . 276
35. DESERV Functions Common Reason Codes 277
36. DESERV GET Function Reason Codes 277
37. DESERV GET_ALL Function Reason Codes 278
38. DESERV GET_NAMES Function Reason Codes 279
39. DESERV RELEASE Function Reason Codes 279
40. DESERV UPDATE Function Reason Codes 280
41. DESERV DELETE Function Reason Codes 280
42. DESERV RENAME Function Reason Codes 281
43. SETPRT Return Codes 00 to 14 . 348
44. SETPRT Return Codes 18 to 50 . 350
45. Reason Codes for IBM 3800 Printers (for Return Codes 04, 08, 0C, 4C) 352

 Copyright IBM Corp. 1976, 1999 xi

46. Reason Codes for All Printers (for Return Code 1C) 352
47. Reason Codes for 3800 Printers and 4248 Printer (for Return Code 48) 352
48. Reason Codes for Return Code 50 . 352
49. Reason Codes for Non-3800 Printers (for Completion Code 0C00) . . 353
50. Message Buffer Format . 367
51. Conversion of ISO/ANSI Record Control Word to D/DB Record

Descriptor Word . 409
52. Conversion of ISO/ANSI Segment Control Word to DS/DBS Segment

Descriptor Word . 410
53. Record length for printers . 413
54. DASD Physical Characteristics . 415
55. VSAM Usage of 3380 DASD Space . 416
56. VSAM Usage of 3390 DASD Space . 417
57. VSAM Usage of 9345 DASD Space . 418
58. Control Interval Size . 419

xii DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, programs, or services, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. DWZ
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only, and do not in any manner serve as an endorsement of these Web sites.

Programming Interface Information
This book is intended to help you to use VSAM and non-VSAM macro instructions.

This publication documents intended Programming Interface that allow the
customer to write programs to obtain services of DFSMS/MVS.

 Copyright IBM Corp. 1976, 1999 xiii

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

| UNIX is a registered trademark in the United States and/or other countries licensed
| exclusively through X/Open Company Limited.**

3090
ADSTAR
AFP
AIX
CICS/ESA
CICS/MVS
DATABASE 2
DB2
DFSMS/MVS
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
ES/4381
ESA/370
ESA/390
ESCON
Hardware Configuration Definition
Hiperbatch
Hiperspace
IBM
ImagePlus
IMS/ESA
Knowledge Mining Center
LAN Distance
MVS/DFP
MVS/ESA

MVS/SP
MVS/XA
NetDoor
OPC
OpenEdition
OS/2
PC AT
Print Services Facility
ProBranch
PS/Note
PS/2
PSF
PSF/6000
RACF
Resource Measurement Facility
RETAIN
RMF
RPG
RS/6000
S/370
System/360
System/370
System/390
Systems Application Architecture
Ultimotion
VSE/ESA

xiv DFSMS/MVS V1R5 Macro Instructions for Data Sets

About This Book

This book is intended to help you use virtual storage access method (VSAM) and
non-VSAM IBM data management macros to process data sets. “Part 1. VSAM
Macro Instructions” describes virtual storage access method (VSAM) macros,
examples of coding the macros in assembler language, and the return codes. “Part
2. Non-VSAM Macro Instructions” describes non-VSAM macros and the return
codes. Each part presents the macros in alphabetical order. The standard form of
each macro is described first, followed by the list and execute forms, if available.
The list and execute forms are available only for macros that pass parameters in a
list.

Use this book with DFSMS/MVS Using Data Sets, SC26-4922, which describes the
access methods and how to write programs that process VSAM and non-VSAM
data sets.

Macros allow you to communicate service requests to the access method routines.
The macros are placed in the macro library when the operating system is installed.
The assembler expands each macro into executable machine language instructions
or data, and shows the exact macro expansion in the assembler listing. The
executable instructions typically consist of branches around data fields, load
register instructions, and either branch instructions or supervisor calls (SVC) that
transfer control to the proper program. The data fields in each macro are
parameters that are passed to the access method routine.

The operation of most macros depends on the options you select when coding the
macro. For these macros, separate descriptions are provided for each parameter,
keyword, and option. The standard, list, and execute forms of the macros are
provided where differences exist, otherwise, just the standard form is provided.

The macros described in this book are in the standard system macro library,
SYS1.MACLIB. Refer to OS/390 MVS Authorized Assembler Services Guide and to
OS/390 MVS Authorized Assembler Services Reference ALE-DYN, OS/390 MVS
Authorized Assembler Services Reference ENF-IXG, OS/390 MVS Authorized
Assembler Services Reference LLA-SDU, and OS/390 MVS Authorized Assembler
Services Reference SET-WTO to write programs that use MVS/ESA supervisor
services.

DFSMS/MVS macros require Assembler H Version 2 or High Level Assembler. See
DFSMS/MVS General Information for DFSMS/MVS requirements.

To learn about catalogs and the access method services commands, see:

� DFSMS/MVS Access Method Services for ICF, SC26-4906, and DFSMS/MVS
Access Method Services for VSAM, SC26-4905, which describe the access
method services commands used to process VSAM data sets.

� DFSMS/MVS Managing Catalogs, SC26-4914, which describes how to create
master and user catalogs.

The following access methods and macros are shown in this publication for
compatibility only. Although still supported, their use is not recommended, and,
where applicable, alternatives are suggested.

� BDAM (use VSAM instead)

 Copyright IBM Corp. 1976, 1999 xv

� BISAM (use VSAM instead)
� QISAM (use VSAM instead).

Not-recommended non-VSAM macros are:

DCB (BDAM, BISAM, QISAM)
 ESETL
 FREEDBUF
 GET (QISAM)
 PUT (QISAM)

READ (BDAM, BISAM)
 RELEX
 SETL

WRITE (BDAM, BISAM)

The Mass Storage System (MSS) and the ACQRANGE, CNVTAD, MNTACQ
macros are no longer supported.

Preparing Your Books for Use
All the VSAM and non-VSAM guidance material is in DFSMS/MVS Using Data
Sets. All the macros are in DFSMS/MVS Macro Instructions for Data Sets.
However, you can rearrange the sections of these books to create your own VSAM
guide and reference and non-VSAM guide and reference.

 ┌──────────┐
 │ USING │
 │ DATA │
 │ SETS ├─────┐ ┌──────────┐
 │ │ │ │ │

│ Part 1 │ │ │ MACROS │
 │ Intro │ ├─────┐ │ ├─────┐

└──┬──┬────┘ │ │ │ │ │
│ │ Part 2 │ │ │ Part 1 │ │
│ │ VSAM │ ├─────┐ │ VSAM │ ├─────┐
│ └┬────┬────┘ │ │ └┬────┬────┘ │ │
│ │ │ Part 3 │ │ │ │ Part 2 │ │
│ │ │ Non-VSAM │ │ │ │ Non-VSAM │ │

 │ │ └────┬─┬───┘ │ │ └─┬────┬───┘ │
│ │ │ │Part 4 │ │ │ │Part 3 │
│ │ │ │Appendix │ │ │ │Appendix │

 │ │ │ └─────────┘ │ │ └─────────┘
 │ │ ┌───────┼────────────────────────────┘ │
 │ │ │ └────────────────────────────────┐ │
 │ │ │ │ │
 └─────────────┐ ┌──────────┐
 │ USING │ │ USING │

│ VSAM │ │ NON-VSAM │
 │ DATA │ │ DATA │
 │ SETS │ │ SETS │
 │ & │ │ & │
 │ MACROS │ │ MACROS │
 └──────────┘ └──────────┘

To Create the VSAM Book
1. Remove all of Part 1 and Part 2 from DFSMS/MVS Using Data Sets. Make a

copy of Part 1 for the non-VSAM book.

2. Remove all of Part 1 from DFSMS/MVS Macro Instructions for Data Sets.

3. Select the appendixes you want for the VSAM book.

4. Reassemble all pages in a three- or five-ring binder.

xvi DFSMS/MVS V1R5 Macro Instructions for Data Sets

To Create the Non-VSAM Book
1. Remove all of Part 3 from DFSMS/MVS Using Data Sets and all of Part 2 of

DFSMS/MVS Macro Instructions for Data Sets.

2. Select the appendixes you want for the non-VSAM book.

3. Reassemble all pages in a three or five ring binder.

Required Product Knowledge
To use this book effectively, you should be familiar with:

 � Assembler language
 � Catalog administration
� Job control language
� VSAM and non-VSAM data management.

You should be familiar with the information presented in the following publications:

Publication Title Order Number

High Level Assembler/MVS & VM & VSE Programmer’s Guide SC26-4941

High Level Assembler/MVS & VM & VSE Language Reference SC26-4940

Assembler H Version 2 Programming Guide GC26-4036

Assembler H Version 2 Language Reference GC26-4037

DFSMS/MVS Access Method Services for ICF SC26-4906

DFSMS/MVS Using Data Sets SC26-4922

How to Tell if this Book is Current
IBM regularly updates its books with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a book are
identical, but subsequent updates might be available in softcopy before they are
available in hardcopy. Here's how to determine the level of a book:

� Check the book's order number suffix (often referred to as the dash level). A
book with a higher dash level is more current than one with a lower dash level.
For example, in the publication order number SC26-4930-02, the dash level 02
means that the book is more current than previous levels, such as 01 or 00.
Suffix numbers are updated as a product moves from release to release, as
well as for hardcopy updates within a given release.

� Check to see if you are using the latest softcopy version. To do this, compare
the last two characters of the book's file name (also called the book name). The
higher the number, the more recent the book. For example, DGT1U302 is more
recent than DGT1U301.

� Compare the dates of the hardcopy and softcopy versions of the books. Even if
the hardcopy and softcopy versions of the book have the same dash level, the
softcopy could be more current. This will not be apparent from looking at the
edition notice. The edition notice number and date remain that of the last
hardcopy version. When you are looking at the softcopy product bookshelf,
check the date shown to the right of the book title. This will be the date that the
softcopy version was created.

 About This Book xvii

Also, an asterisk (*) is added next to the new and changed book titles in the
CD-ROM booklet and the README files.

Vertical lines to the left of the text indicate changes or additions to the text and
illustrations. For a book that has been updated in softcopy only, the vertical lines
indicate changes made since the last printed version.

 Referenced Publications
Within the text, references are made to the following publications:

Publication Title Order Number

Assembler H Version 2 Language Reference GC26-4037

DFSMS/MVS Access Method Services for ICF

DFSMS/MVS Access Method Services for VSAM

SC26-4906

SC26-4905

DFSMS/MVS Checkpoint/Restart SC26-4907

DFSMS/MVS General Information GC26-4900

DFSMS/MVS Installation Exits SC26-4908

DFSMS/MVS Program Management SC26-4916

DFSMS/MVS DFSMSdfp Storage Administration Reference SC26-4920

DFSMS/MVS Using Data Sets SC26-4922

DFSMS/MVS DFSMSdfp Advanced Services SC26-4921

DFSMS/MVS Using Magnetic Tapes SC26-4923

DFSMS/MVS Utilities SC26-4926

Enterprise Systems Architecture/390 Principles of Operation SA22-7201

IBM High Level Assembler/MVS & VM & VSE Language
Reference

SC26-4940

IBM 3800 Printing Subsystem Programmer’s Guide GC26-3846

IBM 3800 Printing Subsystem Models 3 and 8 Programmer’s
Guide

SH35-0061

IBM 3890 Document Processor Machine and Programming
Description

GA24-3612

IBM 4248 Printer Model 1 Description GA24-3927

OS/390 MVS JCL Reference GC28-1757

OS/390 MVS JCL User's Guide GC28-1758

OS/390 MVS Assembler Services Guide GC28-1762

Programming Support for the IBM 3505 Card Reader and the
IBM 3525 Card Punch

GC21-5097

OS/390 MVS System Codes GC28-1780

OS/390 MVS System Messages, Vol 1 (ABA-ASA) GC28-1784

OS/390 MVS System Messages, Vol 2 (ASB-EWX) GC28-1785

OS/390 MVS System Messages, Vol 3 (GDE-IEB) GC28-1786

OS/390 MVS System Messages, Vol 4 (IEC-IFD) GC28-1787

OS/390 MVS System Messages, Vol 5 (IGD-IZP) GC28-1788

xviii DFSMS/MVS V1R5 Macro Instructions for Data Sets

References to Product Names Used in DFSMS/MVS Publications
DFSMS/MVS publications support DFSMS/MVS, 5695-DF1, as well as the
DFSMSdfp base element and the DFSMShsm, DFSMSdss, and DFSMSrmm
features of OS/390, 5647-A01. DFSMS/MVS publications also describe how
DFSMS/MVS interacts with other IBM products to perform the essential data,
storage, program and device management functions of the operating system.

DFSMS/MVS publications typically refer to another IBM product using a generic
name for the product. When a particular release level of a product is relevant, the
reference includes the complete name of that product. This section explains the
naming conventions used in the DFSMS/MVS library for the following products:

MVS can refer to:

� MVS/ESA SP Version 5, 5695-047 or 5695-048

� The MVS base control program (BCP) of OS/390, 5647-A01

All MVS book titles used in DFSMS/MVS publications refer to the OS/390 editions.
Users of MVS/ESA SP Version 5 should use the corresponding MVS/ESA book.
Refer to OS/390 Information Roadmap for titles and order numbers for all the
elements and features of OS/390.

For more information about OS/390 elements and features, including their
relationship to MVS/ESA SP and related products, please refer to OS/390 Planning
for Installation.

RACF can refer to:

� Resource Access Control Facility (RACF), Version 2, 5695-039

� The RACF element of the OS/390 Security Server, an optional feature of
OS/390

All RACF book titles refer to the Security Server editions. Users of RACF Version 2
should use the corresponding book for their level of the product. Refer to OS/390
Security Server (RACF) Introduction for more information about the Security Server.

CICS can refer to:

 � CICS/MVS, 5665-403

 � CICS/ESA, 5685-083

� The CICS element of the CICS Transaction Server for OS/390, 5665-147

All CICS book titles refer to the CICS Transaction Server for OS/390 editions.
Users of CICS/MVS and CICS/ESA should use the corresponding books for those
products. Please see CICS Transaction Server for OS/390: Planning for Installation
for more information.

 About This Book xix

xx DFSMS/MVS V1R5 Macro Instructions for Data Sets

Summary of Changes

This summary of changes includes specific updates to this book as well as product
highlights for previous releases.

Fifth Edition, March 1999
This publication is a minor revision in support of the functional changes introduced
with DFSMS/MVS Version 1 Release 5. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

This revision also includes maintenance and editorial changes.

The following summarizes the changes to that information.

� The following VSAM macros have been updated:

 – ACB, ENDREQ

� New non-VSAM macro, IEWLCNVT, was added

� The format of the DCBE has been added to “Data Control Block Extension
(DCBE)” on page 406

� The section, “DCBE—(BSAM, QSAM, and BPAM)” on page 261 has been
updated

� IHADCBE was added to Appendix A, “Macros Available by Access Method” on
page 391

� “POINT TYPE=ABS—List Form” on page 319 and “POINT
TYPE=ABS—Execute Form” on page 320 was added to non-VSAM POINT
macro.

� Support for processing ISO/ANSI Version 4 tape labels was added to
“DCB—Construct a Data Control Block (BSAM)” on page 212 and
“DCB—Construct a Data Control Block (QSAM)” on page 241.

� As part of the name change of OpenEdition to OS/390 UNIX System Services,
occurrences of OS/390 OpenEdition have been changed to OS/390 UNIX
System Services or its abbreviated name, OS/390 UNIX. OpenEdition may
continue to appear in messages, panel text, and other code with OS/390 UNIX
System Services.

Note: For other important updates to this book, please check informational APAR
II11474, a repository of DFSMS/MVS 1.5 information that was not available
at the time DFSMS/MVS books were published for general availability.

Fourth Edition, June 1997
This publication is a major revision in support of the functional changes introduced
with DFSMS/MVS Version 1 Release 4. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change (a revision
bar). For a book that has been updated in softcopy only, the vertical lines indicate
changes made since the last printed version.

This revision also includes maintenance and editorial changes.

 Copyright IBM Corp. 1976, 1999 xxi

These changes were made to this book:

� The following VSAM macros have been updated

– ACB, BLDVRP, DLVRP, GENCB ACB, RPL, SHOWCB-ACB,
SHOWCB-RPL, TESTCB-ACB

� The following non-VSAM macros have been updated

 – BSP, CHECK

� The DESERV macro has been updated for the FUNC=GET and
FUNC=GET_ALL calls

� The section Chapter 4, “VSAM Macro Return and Reason Codes” on
page 125 has been updated.

� Figure 30 on page 170 has been added as example of using a DCB exit list
routine above the line. This is an example of a technique to have a 31-bit exit
routine residing above the 16MB line but with an entry point below the line.

Third Edition, December 1995
This publication is a major revision in support of the functional changes introduced
with DFSMS Version 1 Release 3. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change. For a book that
has been updated in softcopy only, the vertical lines indicate changes made since
the last printed version.

This revision also includes maintenance and editorial changes.

The following summarizes the changes to that information.

The following VSAM control block macros have been updated:

� ACB, EXLST, GENCB—ACB, GENCB—EXLST, GENCB—RPL,
MODCB—RPL, RPL, SHOWCB—ACB, SHOWCB—RPL, TESTCB—ACB.

IDALKADD macro information has been added to the VSAM section of the book.
IDALKADD is used to perform VSAM Record Level Sharing locking functions.

The VSAM return and reason codes have updated.

DESERV macro information has been added to the non-VSAM section of the book.
The information includes the syntax for the different DESERV functions, the
parameter descriptions, and return and reason codes. The DESERV macro is used
to perform operations on PDS and PDSE directories.

Service Update to Version 1 Release 3, September 1996
Information has been added to support BSAM, QSAM, and VSAM Access to HFS
files. This support allows you access HFS files using these access methods.

xxii DFSMS/MVS V1R5 Macro Instructions for Data Sets

Part 1. VSAM Macro Instructions

 Copyright IBM Corp. 1976, 1999 1

2 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Chapter 1. Introduction to VSAM Programming

The virtual storage access method (VSAM) is used to organize data and maintain
information about that data in a catalog. VSAM programming is performed using
access method services commands and VSAM macros.

� Access method services . You define VSAM data sets and establish catalogs
using a multi-function services program called access method services.

� Job control language . You can also define VSAM data sets using JCL.

� VSAM macro instructions . Two types of VSAM macros are used to process
VSAM data sets:

– Control block macros generate control blocks of information needed by
VSAM to process the data set.

– Request macros are used to retrieve, update, delete, or insert logical
records.

You can use 24-bit or 31-bit addressing mode for VSAM programs. If you use
31-bit support, see DFSMS/MVS Using Data Sets for procedures and restrictions.

 Copyright IBM Corp. 1976, 1999 3

4 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Chapter 2. Notational Conventions

A uniform notation describes the format of VSAM macro instructions. This notation
is not part of the language; it is merely a way of describing the format of the
instructions. The instruction format definitions in this book use the following
conventions:

[] Brackets enclose an optional entry. You may, but need not, include the
entry. Examples are:

 � [length]
 � [MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must
specify one, and only one, of the entries unless you allow an indicated
default. Examples are:

 � [REREAD|LEAVE]
 � [length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of
the entries. Examples are:

 � BFTEK={S|A}
 � {K|D}
 � {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces.
An example is:

In the example above, you must choose only one entry from the vertical
stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis
may be repeated. For example:

 � (dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:

� CLOSE , , , ,TYPE=T

 � MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you
do not specify any of the alternatives. Examples are:

 � [EROPT={ACC|SKP|ABE }]

 � [BFALN={F|D }]

MACRF={{(R[C|P])}
{(W[C|P|L])}
{(R[C],W[C])}}

 Copyright IBM Corp. 1976, 1999 5

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each
parameter. Examples are:

 � number

 � image-id

 � count

6 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Chapter 3. VSAM Macro Descriptions and Examples

This chapter contains VSAM macro formats and examples.

The macros that work at assembly time allow you to specify subparameter values
as absolute numeric expressions, character strings, codes, and expressions that
generate valid relocatable A-type address constants.

The macros that work at execution allow you also to specify these values as:

� Register notation, where the expression designating a register from 2 through
12 is enclosed in parentheses. For example, (2) and (REG), where REG is a
label equated to a number from 2 through 12.

� An expression of the form (S,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form.

� An expression of the form (*,scon), where scon is an expression valid for an
S-type address constant, including the base-displacement form, and the
address specified by scon is indirect—that is, it gives the location of the area
that contains the value for the subparameter.

For most programming applications, you can use register notation or absolute
numeric expressions for numbers, character strings for names, and register notation
or expressions that generate valid A-type address constants for addresses.
“Subparameters with GENCB, MODCB, SHOWCB, and TESTCB,” gives all the
ways of coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros. “Use of List,
Execute, and Generate Forms of VSAM Macros” on page 8, describes alternative
ways of coding these macros for reentrant programs. This chapter describes the
standard form of these macros.

Subparameters with GENCB, MODCB, SHOWCB, and TESTCB
The addresses, names, numbers, and options required with subparameters in
GENCB, MODCB, SHOWCB, and TESTCB can be expressed in a variety of ways:

� An absolute numeric expression , for example, STRNO=3 and COPIES=10.

� A code or a list of codes separated by commas and enclosed in
parentheses , for example, OPTCD=KEY or OPTCD=(KEY,DIR,IN).

� A character string , for example, DDNAME=DATASET.

� A register from 2 through 12 that contains an address or numeric value ,
for example, SYNAD=(3); equated labels can be used to designate a register,
for example, SYNAD=(ERR), where the following equate statement has been
included in the program: ERR EQU 3.

� An expression of the form (S,scon) , where scon is an expression valid for an
S-type address constant, including the base-displacement form. The contents
of the base register are added to the displacement to obtain the value of the
keyword. For example, if the value of the keyword being represented is a
numeric value (that is, COPIES, LENGTH, RECLEN), the contents of the base
register are added to the displacement to determine the numeric value. If the
value of the keyword being represented is an address constant (that is,

 Copyright IBM Corp. 1976, 1999 7

WAREA, EXLST, EODAD, ACB), the contents of the base register are added to
the displacement to determine the value of the address constant.

� An expression of the form (*,scon) , where scon is an expression valid for an
S-type address constant, including the base-displacement form. The address
specified by scon is indirect , that is, it is the address of an area that contains
the value of the keyword. The contents of the base register are added to the
displacement to determine the address of the fullword of storage that contains
the value of the keyword.

If an indirect S-type address constant is used, the value it points to must meet
the following criteria:

– If it is a numeric quantity or an address, it must occupy a fullword of
storage.

– If it is an alphanumeric character string, it must occupy two words of
storage, be left aligned, and be filled on the right with blanks.

� An expression valid for a relocatable A-type address constant , for example,
AREA=MYAREA+4.

The specified keyword determines the type of expressions that can be used. Also,
register and S-type address constants cannot be used when MF=L is specified.

Use of List, Execute, and Generate Forms of VSAM Macros
The BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB macros build a
parameter list describing in codes the actions shown by the subparameters you
specify and pass the list to VSAM to take the suggested action.

The list, execute, and generate forms of BLDVRP, DLVRP, GENCB, MODCB,
SHOWCB, and TESTCB allow you to write reentrant programs, to share parameter
lists, and to modify a parameter list before using it.

Following is a brief description of the list, execute, and generate forms:

� The list form is used to build the parameter list either in line (called a simple
list) or in an area remote from the macro expansion (called a remote list).
Both the simple- and the remote-list forms allow you to build a single parameter
list that can be shared.

� The execute form is used to modify a parameter list and to pass it to VSAM for
action.

� The generate form is used to build the parameter list in a remote area and to
pass it to VSAM for action.

The list, execute, and generate forms of the BLDVRP, DLVRP, GENCB, MODCB,
SHOWCB, and TESTCB macros have the same format as the standard forms,
except for:

� An additional keyword, MF.

� Keywords that are required in the standard form may be optional in the list,
execute, and generate forms or may not be allowed in the execute form. The
meaning of the keywords, however, and the notation that may be used to
express addresses, names, numbers, and option codes are the same.

8 DFSMS/MVS V1R5 Macro Instructions for Data Sets

The following sections describe the format of the MF keyword and the use of list,
execute, and generate forms. They also show the optional and invalid
subparameters.

 List-Form Keyword
The format of the MF keyword for the list form is:

MF={L|(L, address[,label])}

where:

L specifies that this is the list form of the macro.

address
specifies the address of a remote area in which the parameter list is to be built.
The area must begin on a fullword boundary. You can specify the address in
register notation or as an expression valid for a relocatable A-type address
constant or a direct or indirect S-type address constant.

label
specifies a unique name used in an EQU instruction in the expansion of the
macro. Label is equated to the length of the parameter list. You do not have to
know the length of the parameter list if you code label; the expansion of the
macro determines the amount of storage required.

Because the MF=L expansion does not include executable code, register notation
and expressions that generate S-type address constants cannot be used.

If you code MF=L, the parameter list is built in line, which means that the program
is not reentrant if the parameter list is modified at execution.

If you code MF=(L,address), the parameter list is built in the remote area specified,
and the area must be large enough for the parameter list.

The size, in fullwords, of a parameter list is:

� For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL keywords
specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or SYNAD)

� For MODCB, 3, plus 3 times the number of ACB, EXLST, or RPL keywords
specified (plus 1 for DDNAME, EODAD, JRNAD, LERAD, or SYNAD)

� For SHOWCB, 5, plus 2 times the number of fields specified in the FIELDS
keyword

� For TESTCB, 8 (plus 1 for either DDNAME, STMST, EODAD, JRNAD, LERAD,
or SYNAD).

If you code MF=(L,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates label with the length of the
parameter list.

 Chapter 3. VSAM Macro Descriptions and Examples 9

 Execute-Form Keyword
The format of the MF keyword for the execute form is:

MF=(E,address)

where:

E specifies that this is the execute form of the macro.

address
specifies the address of the parameter list.

Expansion of the execute form of the macro results in executable code that causes:

1. A parameter list to be modified, if requested
2. Control to be passed to a routine that satisfies the request.

You may not use the execute form to add an entry to a parameter list. If you try to
add an entry, you receive a return code of 8 in register 15.

 Generate-Form Keyword
The format of the MF keyword for the generate form is:

MF=(G,address[,label])

where:

G specifies that this is the generate form of the macro.

address
specifies the address of a remote area in which the parameter list is to be built.
The area must begin on a fullword boundary.

label
specifies a unique name that is used in an EQU instruction in the expansion of
the macro. Label is equated to the length of the parameter list. You do not
have to know the length of the parameter list if you code label; the expansion
of the macro determines the amount of storage required.

If you code MF=(G,address), the parameter list is built in the remote area specified.

If you code MF=(G,address,label), the parameter list is built in the remote area
specified. The expansion of the macro equates the length of the parameter list to
label.

Examples of Generate, List, and Execute Forms
Figure 1 shows which forms of GENCB, MODCB, SHOWCB, and TESTCB should
be used in reentrant/nonreentrant and shared/nonshared environments.

10 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Figure 1. Reentrant Programming.

Reentrant Nonreentrant

Shared MF=(L,address[,label]) MF=L

MF=(E,address) MF=(E,address)

Nonshared MF=(G,address[,label]) Standard Form

The figure shows that:

� To share parameter lists in a reentrant program, the remote-list form should be
used with the execute form.

� To share parameter lists in a nonreentrant program, the simple-list form should
be used with the execute form.

� If you do not intend to share parameter lists, the generate form should be used
in reentrant programs and the standard form should be used for nonreentrant
programs.

The following examples show how the list, execute, and generate forms work.

Example: Generate Form (Reentrant)
In this example, the generate form of GENCB is used to create a default request
parameter list (RPL) in a reentrant environment.

LA 1ð,LEN1 Get length of the parameter list.

GETMAIN R,LV=(1ð) Get storage for the area in which x
the parameter list is to be built. x

LR 2,1 Save address of parameter-list area.

 GENCB BLK=RPL, x
 MF=(G,(2),LEN1)

The macro expansion equates LEN1 to the length of the parameter list, as follows:

+LEN1 EQU 16

The parameter list is built in the area acquired by the GETMAIN macro and pointed
to by register 2. This list is used by VSAM to build the RPL. VSAM returns the RPL
address in register 1 and the RPL length in register 0. If the WAREA and LENGTH
parameters are used, the RPL is built at the WAREA address.

Example: Remote-List Form (Reentrant)
In this example, the remote-list form of MODCB is used to build a parameter list
that will later be used to modify the MACRF bits in the access method control block
ANYACB.

LA 8,LEN2 Get length of the parameter list.

GETMAIN R,LV=(8) Get storage for the area in which the x
parameter list is to be built.

LR 3,1 Save address of the parameter-list area.

 MODCB ACB=ANYACB, x
 MACRMF=(L,(3),LEN2)

The macro expansion equates the length of the parameter list to LEN2, as follows:

 Chapter 3. VSAM Macro Descriptions and Examples 11

 ACB

+LEN2 EQU 24

This parameter list is built in the remote area pointed to by register 3. The list is
used by VSAM to modify the ACB when an execute form of MODCB is issued (see
next example). The list form only creates a parameter list; it does not modify the
ACB.

Example: Execute Form (Reentrant)
In this example, the execute form of MODCB is used to modify the address of the
access method control block and MACRF codes in the parameter list created by
the remote-list form of MODCB in the previous example.

MODCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3))

The parameter list pointed to by register 3 is changed so that the ACB and MACRF
parameter values in the execute form override those in the list form. The access
method control block, MYACB, is then modified to MACRF=(ADR,SEQ,OUT).

The access method control block at ANYACB is not changed by either of these
examples.

ACB—Generate an Access Method Control Block at Assembly Time
Use the ACB macro to generate an access method control block at assembly time.

The format of the ACB macro is:

[label] ACB [AM=VSAM]
[,BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,DDNAME=character string]
[,EXLST=address]
[,MACRF=([ADR][,CNV] [,KEY]
 [,CFX|NFX]
 [DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI |NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])]
[,MAREA= address]
[,MLEN=abs expression]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE }]
[,SHRPOOL={0 |abs expression}]
[,STRNO=abs expression]
[,RLSREAD={NRI|CR|NORD }]

12 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ACB

Values for ACB macro subparameters can be specified as absolute numeric
expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

label
specifies 1 to 8 characters that provide a symbolic address for the access
method control block that is assembled. If you omit the DDNAME parameter,
label serves as the ddname.

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=abs expression
specifies the number of strings initially allocated for access to the base cluster
of a path. BSTRNO must be a number between 0 and 255. The default is
STRNO. BSTRNO is ignored if the object being opened is not a path. If the
number specified for BSTRNO is insufficient, VSAM dynamically extends the
number of strings as needed for the access to the base cluster.

BSTRNO can influence performance. The VSAM control blocks for the set of
strings specified by BSTRNO are allocated on contiguous virtual storage,
whereas this is not guaranteed for the strings allocated by dynamic extension.

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for HFS files.

BUFND=abs expression
specifies the number of I/O buffers VSAM is to use for transmitting data
between virtual and auxiliary storage. A buffer is the size of a control interval in
the data component. BUFND must be a number between 0 and 65535. The
minimum number you may specify is 1 plus the number specified for STRNO.
(If you omit STRNO, BUFND must be at least 2, because the default for
STRNO is 1.) The number can be supplied through the JCL DD AMP
parameter and through the macro. The default is the minimum number
required. Note, however, that minimum buffer specification does not provide
optimum sequential processing performance. Generally, the more data buffers
specified, the better the performance.

Note also that additional data buffers benefits direct inserts or updates during
control area splits and benefits spanned record accessing. The maximum
number of buffers allowed is currently 255 (254 data buffers and 1 insert
buffer). See DFSMS/MVS Using Data Sets for more information on optimizing
performance.

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for HFS files.

BUFNI=abs expression
specifies the number of I/O buffers VSAM is to use for transmitting the contents
of index entries between virtual and auxiliary storage for keyed access. A buffer
is the size of a control interval in the index. BUFNI must be a number between
0 and 65535. The minimum number is the number specified for STRNO (if you
omit STRNO, BUFNI must be at least 1, because the default for STRNO is 1).
You can supply the number through the JCL DD AMP parameter and through
the macro. The default is the minimum number required.

 Chapter 3. VSAM Macro Descriptions and Examples 13

 ACB

Additional index buffers improve performance by providing for the residency of
some or all of the high-level index, thereby minimizing the number of high-level
index records retrieved from DASD for key-direct processing. For more
information on optimizing performance, see DFSMS/MVS Using Data Sets.

The default is the minimum number required. The maximum number of buffers
allowed is currently 255 (254 data buffers and 1 insert buffer).

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for HFS files.

BUFSP=abs expression
specifies the maximum number of bytes of virtual storage to be used for the
data and index I/O buffers. VSAM gets the storage in your program's address
space. If you specify less than the amount of space specified in the
BUFFERSPACE parameter of the DEFINE command when the data set was
defined, VSAM overrides your BUFSP specification upward to the value
specified in BUFFERSPACE. (BUFFERSPACE, by definition, is the least
amount of virtual storage that is ever provided for I/O buffers.) You can supply
BUFSP through the JCL DD AMP parameter and through the macro. If you do
not specify BUFSP in either place, the amount of storage used for buffer
allocation is the largest of the:

� Amount specified in the catalog (BUFFERSPACE),
� Amount determined from BUFND and BUFNI, or
� Minimum storage required to process the data set with its specified

processing options.

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called for
by BUFND and BUFNI, the extra space is allocated as follows:

� When MACRF indicates direct access only, additional index buffers are
allocated.

� When MACRF indicates sequential access, one additional index buffer and
as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and BUFNI,
the number of data and index buffers is decreased as follows:

� When MACRF indicates direct access only, the number of data buffers is
decreased to not fewer than the minimum number. Then, if required, the
number of index buffers is decreased until the amount called for by BUFND
and BUFNI complies with the BUFSP amount.

� When MACRF indicates sequential access, the number of index buffers is
decreased to not fewer than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not fewer than the
minimum number. If still required, 1 more is subtracted from the number of
index buffers.

� Neither the number of data buffers nor the number of index buffers is
decreased to fewer than the minimum number.

14 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ACB

If the index does not exist or is not being opened, only BUFND, and not
BUFNI, enters these calculations.

The BUFFERSPACE must not exceed 16776704.

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for HFS files.

DDNAME=character string
specifies 1 to 8 characters that identify the data set you want to process by
specifying the JCL DD statement for the data set. You may omit DDNAME and
provide it through the label or through the MODCB macro before opening the
data set. MODCB is described in “MODCB—Modify an Access Method Control
Block” on page 66.

EXLST=address
specifies the address of a list of addresses of exit routines that you are
providing. The list must be established by the EXLST or GENCB macro. If you
use the EXLST macro, you can specify its label here as the address of the exit
list. If you use GENCB, you can specify the address returned by GENCB in
register 1 or the label of an area you supplied to GENCB for the exit list.

To use the exit list, you must code this EXLST parameter. Omitting this
parameter means that you have no exit routines. Exit routines are described in
DFSMS/MVS Using Data Sets.

MACRF=([ADR][,CNV][,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])

specify the kinds of processing you will do with the data set. The
subparameters must be significant for the data set. For example, if you specify
keyed access for an entry-sequenced data set (ESDS), you cannot open the
data set. You must specify all the types of access you are going to use,
whether you use them concurrently or by switching from one to the other.
Figure 2 gives the subparameters. Each group of subparameters has a default
value (shown by underlining). You may specify subparameters in any order.
You may specify both ADR and KEY to process a key-sequenced data set
(KSDS). You may specify both DIR and SEQ; with keyed access, you may
specify SKP as well. If you specify OUT and want merely to retrieve some
records and also update, delete, or insert others, you need not also specify IN.

 Chapter 3. VSAM Macro Descriptions and Examples 15

 ACB

Figure 2 (Page 1 of 3). MACRF Options

Option Meaning

ADR Addressed access to a key-sequenced or entry-sequenced data set; RBAs
are used as search arguments and sequential access is by entry
sequence. RLS does not support ADR access to a KSDS.

CNV Access is to the entire contents of a control interval rather than to an
individual data record. If the data set is password protected, you must
supply the address of the control or higher-level password in the ACB
PASSWD parameter.

Note: It is recommended that you use RACF or a functionally equivalent
program instead of VSAM passwords.

For RLS, CNV is invalid. This parameter is invalid for HFS files and if
specified results in an OPEN failure.

KEY Keyed access to a relative record data set (RRDS) or key-sequenced data
set. Keys or relative record numbers are used as search arguments and
sequential access is by key or relative record number. KEY processing is
not affected by RLS.

CFX OPEN fixes control blocks and I/O buffers and they remain fixed until the
ACB is closed.

For RLS, CFX is ignored, and NFX is assumed. This subparameter has no
effect for HFS files.

NFX OPEN fixes control blocks and I/O buffers and they remain fixed until the
ACB is closed. For RLS, NFX is assumed.

DDN Subtask shared control block connection is based on common ddnames.
For RLS, DDN is ignored. This subparameter has no effect for HFS files.

DSN Subtask shared control block connection is based on common data set
names. For RLS, DSN is ignored. This subparameter has no effect for HFS
files.

DFR With shared resources, writes for direct PUT requests are deferred until the
WRTBFR macro is issued or until VSAM needs a buffer to satisfy a GET
request. Deferring writes saves I/O requests in cases where subsequent
requests can be satisfied by the data already in the buffer pool. For RLS,
DFR is ignored and direct request modified buffers are immediately written
to disk and the CF (coupling facility). This subparameter has no effect for
HFS files.

NDF Writes are not deferred for direct PUTs. For RLS, NDF is ignored and
direct request modified buffers are immediately written to disk and the CF
(coupling facility).

DIR Direct access to an RRDS, KSDS, or ESDS.

SEQ Sequential access to an RRDS, KSDS, or ESDS.

SKP Skip-sequential access to an RRDS or KSDS. Used only with keyed
access in a forward direction.

ICI Processing is limited to improved control interval processing; access is
faster because fewer processor instructions are executed. ICI processing is
not allowed for extended format data sets.

For RLS, ICI is invalid. This parameter is invalid for HFS files and if
specified results in an open failure.

NCI Processing other than improved control interval processing.

16 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ACB

Figure 2 (Page 2 of 3). MACRF Options

Option Meaning

IN Retrieval of records of a RRDS, KSDS, or ESDS; (not allowed for an empty
data set). If the data set is password protected, you must supply the
address of the read or higher-level password in the ACB PASSWD
parameter.

OUT Storage of new records in a RRDS, KSDS, or ESDS (not allowed with
addressed access to a KSDS). Update of records in a RRDS, KSDS, or
ESDS. Deletion of records from a RRDS or KSDS.

If the data set is password protected, you must supply the address of the
update or higher-level password in the ACB PASSWD parameter.

LEW Using LSR, if an exclusive control conflict is encountered, VSAM defers the
request until the resource becomes available.

NLW With this value specified, instead of deferring the request, VSAM returns
the exclusive control return code 20 (X'14') to the application program.
The application program is then able to determine the next action.

NIS Normal insert strategy. This subparameter has no effect for HFS files.

SIS Sequential insert strategy (split control intervals and control areas at the
insert point rather than at the midpoint when doing direct PUTs); although
positioning is lost and writes are done after each direct PUT request, SIS
allows more efficient space usage when direct inserts are clustered around
certain keys. This subparameter has no effect for HFS files.

NRM The object to be processed is the one named in the specified ddname.

AIX The object to be processed is the alternate index of the path specified by
ddname, rather than the base cluster via the alternate index. For RLS, AIX
is invalid. This subparameter has no effect for HFS files.

NRS Data set is not reusable.

RST Data set is reusable (high-used RBA is reset to 0 during OPEN). If the data
set is password protected, you must supply the address of the update or
higher-level password in the ACB PASSWD parameter.

NSR Nonshared resources.

LSR Local shared resources. Each address space may have up to 256 index
resource pools and 256 data resource pools independent of other address
spaces. Unless you are using the default, SHRPOOL=0, you must specify
the SHRPOOL parameter to indicate which resource pool you are using.
Specifying LSR causes a data set to use the local resource pool built by
the BLDVRP macro. If an index resource pool exists at the time an OPEN
macro is issued, the index for a KSDS is connected to the index resource
pool. This parameter is invalid for HFS files and if specified results in an
open failure.

GSR| Global shared resources; all address spaces may have local and global
| resources pools, where tasks in an address space with a local resource
| pool may use either the local resource pool or the global resource pool.
| This parameter is invalid for HFS files and if specified results in an open
| failure. This parameter is invalid for compressed format data sets.

 Chapter 3. VSAM Macro Descriptions and Examples 17

 ACB

MAREA=address
specifies the address of an optional OPEN/CLOSE or TYPE=T option (CLOSE
macro) message area. See “OPEN/CLOSE Message Area for Multiple Reason
or Attention Messages” on page 132 for more information. MAREA is ignored
for RLS

MLEN=abs expression
specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE
macro) message area. The default is 0. The maximum length is 32KB. See
“OPEN/CLOSE Message Area for Multiple Reason or Attention Messages” on
page 132 for more information. MLEN is ignored for RLS

PASSWD=address
specifies the address of a field containing the highest-level password required
for the types of access indicated by the MACRF parameter. The first byte of the
field pointed to contains the length (in binary) of the password (maximum of 8
bytes). Zero indicates that no password is supplied. If the data set is password
protected and you do not supply a required password in the access method
control block, VSAM gives the console operator the opportunity to supply it
when you open the data set.

Data sets which are opened for RLS processing must be SMS-managed data
sets which have had password processing ignored.

This parameter has no effect for HFS files.

RMODE31=[ALL|BUFF|CB|NONE]
specifies where VSAM OPEN obtains virtual storage (above or below 16
megabytes) for control blocks and I/O buffers.

The values specified by the RMODE31 parameter only have an effect on
VSAM at the setting just before an OPEN is issued. At all other times, changing
these values has no effect on the residency of the control blocks and I/O
buffers.

Figure 2 (Page 3 of 3). MACRF Options

Option Meaning

RLS RLS specifies that VSAM record level sharing protocols are used. RLS and
NSR/LSR/GSR are mutually exclusive. RLS implies that VSAM uses cross
system record level locking as opposed to CI locking, uses CF for buffer
consistency, and manages a system wide local cache. RLS does not
support

� linear data sets
� ADR access to a KSDS
� CNV access to any data set organization.
� Data sets defined with imbedded indexes.

This parameter is invalid for HFS files and if specified results in an open
failure.

NUB Management of I/O buffers is left up to VSAM. For RLS, you must specify
NUB.

UBF Management of I/O buffers is left up to the user. The work area specified
by the RPL (or GENCB) AREA parameter is the I/O buffer. VSAM transmits
the contents of a control interval directly between the work area and direct
access storage. UBF is valid when OPTCD=MVE and MACRF=CNV are
specified. When ICI is specified, UBF is assumed. For RLS, UBF is invalid.

18 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ACB

RMODE31 is ignored for RLS processing.

RMODE31= can also be specified on the JCL AMP parameter.

ALL
specifies both VSAM control blocks and I/O buffers are obtained above 16
megabytes.

BUFF
specifies only VSAM I/O buffers are obtained above 16 megabytes.

CB
specifies only VSAM control blocks are obtained above 16 megabytes.

NONE
specifies both I/O buffers and VSAM control blocks are built below 16
megabytes. This is the default.

SHRPOOL={abs expression|0}
specifies which LSR pool is connected to the ACB. This parameter is valid only
when MACRF=LSR is also specified. SHRPOOL must be a number between 0
and 255. The default is 0.

STRNO=abs expression
specifies the number of requests requiring concurrent data set positioning
VSAM is prepared to handle. STRNO must be a number between 1 and 255.
The default is 1. A request is defined by a given request parameter list or chain
of request parameter lists. The string number is equal to the number of
requests issued concurrently for all the data sets sharing the resource pool.
See “RPL—Generate a Request Parameter List at Assembly Time” on page 85
and “GENCB—Generate a Request Parameter List at Execution Time” on
page 49 for information on request parameter lists. When records are loaded
into an empty data set, the STRNO value in the access method control block
must be 1.

VSAM dynamically extends the number of strings as they are needed by
concurrent requests for this ACB. This automatic extension can influence
performance. The VSAM control blocks for the set of strings specified by
STRNO are allocated on contiguous virtual storage, but this is not guaranteed
for the strings allocated by dynamic extension. Dynamic string addition cannot
be done when using the following options:

 � Load mode
 � ICI
� LSR or GSR.

For STRNO, you should specify the total number of request parameter lists or
chains of request parameter lists you are using to define requests. (VSAM
needs to remember only one position for a chain of request parameter lists.)
However, each position beyond the minimum number that VSAM needs to be
able to remember requires additional virtual storage space for:

� A minimum of one data I/O buffer and, for keyed access, one index I/O
buffer (the size of an I/O buffer is the control interval size of a data set)

� Internal control blocks and other areas.

For RLS, STRNO is ignored. Strings are dynamically acquired up to a limit of
1024.

 Chapter 3. VSAM Macro Descriptions and Examples 19

 ACB

STRNO >1 is not supported for HFS files. If you specify a value greater than
one OPEN fails.

RLSREAD={NRI|CR|NORD }
RLSREAD (for RLS), specifies the read integrity options that apply to GET
requests issued against this ACB. This parameter overrides the read integrity
options specified in the RLS JCL parameter. Read integrity options can also be
specified on the GET request, when they override the RLSREAD specification.

NRI
specifies no read integrity. NRI is a performance option. When you specify
NRI, VSAM does not obtain a lock on the record.

CR
specifies consistent read integrity.

NORD
species the read integrity option used is determined either by the RLS JCL
specification or by options specified on the GET request.

For non-RLS, this parameter is ignored.

Example 1: ACB Macro
In this example, the ACB macro is used to identify a data set to be opened and to
specify the types of processing to be performed. The access method control block
generated by this example is built when the program is assembled.

BLOCK ACB AM=VSAM,BUFND=4, BLOCK gives symbolic x
BUFNI=3, address of the access x
BUFSP=19456, method control block. x

 DDNAME=DATASETS, x
 EXLST=EXITS, x
 MACRF=(KEY,DIR,SEQ,OUT), x
 STRNO=2

The ACB macro's parameters are:

� BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for
index entries. BUFSP specifies 19456 bytes of buffer space, enough space to
accommodate control intervals of data that are 4096 bytes and control intervals
of index entries that are 1024 bytes.

� DDNAME specifies this access method control block is associated with a DD
statement named DATASETS.

� EXLST specifies the exit list associated with this access method control block is
named EXITS.

� MACRF specifies keyed-direct and keyed-sequential processing for both
insertion and update.

� STRNO specifies two requests will require concurrent positioning.

� Since the type of resources are not specified, NSR is assumed.

20 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BLDVRP

Example 2: ACB Macro
In this example, the ACB macro is used to identify a data set to be opened and to
specify the types of processing to be performed. The access method control block
generated by this example is built when the program is assembled. The caller
requests that the VSAM control blocks and I/O buffers be obtained above 16
megabytes, if possible.

BLOCK2 ACB AM=VSAM, BLOCK2 gives symbolic x
DDNAME=DATASETS, address of the access x

 EXLST=EXITS, method control block. x
 MACRF=(KEY,DIR,SEQ,OUT), x
 RMODE31=ALL,

The ACB macro's parameters are:

� DDNAME specifies this access method control block is associated with a DD
statement named DATASETS.

� EXLST specifies the exit list associated with this access method control block is
named EXITS.

� MACRF specifies keyed-direct and keyed-sequential processing for both
insertion and update.

� RMODE31=ALL specifies both VSAM control blocks and buffers may reside
above 16 megabytes.

� Since the type of resources are not specified, NSR is assumed.

BLDVRP—Build VSAM Resource Pool
Use the BLDVRP macro to build a VSAM resource pool.

The format of the BLDVRP macro is:

The BLDVRP macro has a standard form and list and execute forms. The standard
form builds a parameter list and passes control to VSAM to build the resource pool.
The list and execute forms are described in “Use of List, Execute, and Generate
Forms of VSAM Macros” on page 8.

label
specifies 1 to 8 characters that provide a symbolic address for the BLDVRP
macro.

BUFFERS=(size(abs expression[,Hiperspace]), size(abs
expression[,Hiperspace]),...)
specifies the size and number of virtual and Hiperspace buffers in each buffer

[label] BLDVRP BUFFERS=(size(abs expression[,Hiperspace]),
size(abs expression[,Hiperspace]),...)
[,FIX={BFR|IOB|(BFR,IOB)}]
[,KEYLEN= length]
[,MODE={24|31}]
[,RMODE31={ALL|BUFF|CB|NONE }]
[,SHRPOOL={0 |abs expression}]
,STRNO=abs expression
[,TYPE={LSR |(LSR,DATA|INDEX)|GSR}]

 Chapter 3. VSAM Macro Descriptions and Examples 21

 BLDVRP

pool in the resource pool. The number of buffer pools in the resource pool is
implied by the number of “size(abs expression,Hiperspace)” groups you specify.

The request for the virtual storage is granted even if the request for Hiperspace
buffers cannot be completely fulfilled. Some specifications may have
Hiperspace buffers allocated while other specifications in the same BLDVRP
request may not.

When you process a KSDS, the index component and the data component
share the buffers of a buffer pool. When you use an alternate index to process
a base cluster, the components of the alternate index and the base cluster
share buffers. The components of alternate indexes in an upgrade set share
buffers. Buffers of the appropriate size and number must be provided for all
components. Each component uses the buffer pool with buffers of either the
required size or larger.

Note to LSR/GSR Users

To ensure that the buffer pool built by BLDVRP is used, use the access
method services DEFINE CLUSTER command to define explicitly the
matching data and index control interval sizes. Hiperspace buffer sizes must
match the control interval size of the data set components.

size
specifies an integer multiple of 512 or 2048 up to a maximum of 32768
bytes, where n is a positive integer from 1 to 16.

CISZ=(n x 512) or (n x 2048)

Note: If you specify Hiperspace buffering (Hiperspace), the size must be a
multiple of 4096 and match the CISIZE of the data set components.

abs expression
specifies a minimum of 3 up to a maximum of 65535.

Hiperspace
specifies the number of Hiperspace buffers in the buffer pool. The default is
0. The maximum value is 16777215. Specifying many Hiperspace buffers
may create virtual storage constraint problems since an 8-byte hash table
entry is built in virtual address space for each Hiperspace buffer.

Note: The Hiperspace option is ignored when TYPE=GSR is specified.

FIX={BFR|IOB|(BFR,IOB)}
specifies that I/O buffers (BFR), I/O-related control blocks (IOB), or both, are
fixed in real storage. With GSR, IOB includes channel programs. If a program
issues BLDVRP and specifies FIX but the program is not authorized to fix
areas in real storage, FIX is ignored. To be authorized, a program must either
be in supervisor state with protection key 0 to 7, or be link-edited with APF
authorization. See OS/390 MVS Authorized Assembler Services Guide for a
description of the authorized program facility.

If FIX=IOB is specified for BLDVRP TYPE=INDEX, it is ignored; the FIX=IOB
specified for BLDVRP TYPE=DATA is used instead.

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP.

22 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BLDVRP

KEYLEN= length
specifies the maximum key length of the data sets that share the resource pool.
The default is 255.

Note: If your keys are smaller than 255 bytes, specifying the exact key length
saves storage space. You must provide lengths for the prime key of
each KSDS and for the alternate key of each alternate index that is
either used for processing or is being upgraded. Specify 0 if none of the
data sets are keyed.

If KEYLEN is specified for BLDVRP TYPE=INDEX, it is ignored; the KEYLEN
specified for BLDVRP TYPE=DATA is used.

RMODE31={ALL|BUFF|CB|NONE }
specifies the storage residence of the buffers and I/O related control blocks of
the LSR pool identified with the SHRPOOL keyword. The RMODE31
parameter tells VSAM OPEN routines where to obtain storage for the I/O
related control blocks and I/O buffers.

If RMODE31 is specified for BLDVRP TYPE=INDEX, it affects the residence of
the I/O buffers but is ignored for I/O related control blocks. If RMODE31 is
specified for BLDVRP TYPE=INDEX, the RMODE31 specified for BLDVRP
TYPE=DATA is used to set these control blocks instead.

Note: The RMODE31 parameter is valid only when TYPE=LSR is specified.

ALL
specifies both I/O buffers and the VSAM I/O related control blocks
associated with the pool reside above 16 megabytes.

BUFF
specifies that only I/O buffers reside above 16 megabytes. This parameter
is the same as the LOC=ANY parameter in previous releases.

CB
specifies only the VSAM I/O related control blocks associated with the pool
reside above 16 megabytes.

NONE
specifies both I/O buffers and the VSAM I/O related control blocks
associated with the pool reside below 16 megabytes. This is the default.

Note: In previous releases, the LOC=(BELOW|ANY) parameter was used
to specify that buffers in the pool be created above 16 megabytes.
The RMODE31 parameter replaces the LOC parameter and the two
parameters are mutually exclusive. If both are specified on the
BLDVRP macro, the LOC parameter is ignored.

SHRPOOL={0|abs expression}
specifies the identification number of a shared resource pool. This parameter is
valid only when TYPE=LSR and RMODE31 are also specified or defaulted.

0 specifies the shared pool with the ID of 0.

abs expression
specifies the shared pool with the ID of number where number can be 0 to
255. The LSR control block and buffer pool residence is determined by the
RMODE31 parameter.

 Chapter 3. VSAM Macro Descriptions and Examples 23

 BLDVRP

MODE={24|31}
specifies the format of the BLDVRP parameter list to be generated.

24 specifies that a standard form (24-bit) parameter list address be generated.

31 specifies that a long form (31-bit) parameter list address be generated.
This value is required if the parameter list resides above 16 megabytes.

STRNO=abs expression
specifies the total number of place holders required for all the data sets sharing
the resource pool. 1 is minimum; 255 is maximum.

The number should equal the potential number of requests that may be issued
concurrently for all the data sets sharing the resource pool. If a request fails
because of an insufficient number of place holders (you receive reason code
X'40' in the RPL feedback area), you may retry the request. It is assigned a
place holder if one has been released. See Figure 20 on page 140 for a
description of reason code X'40'.

STRNO is required for TYPE=DATA. For BLDVRP TYPE=INDEX, STRNO is
not required and, if specified, is ignored. The STRNO specified by BLDVRP
TYPE=DATA is used.

TYPE={LSR|(LSR, DATA|INDEX)|GSR}
specifies whether a local (LSR) or a global (GSR) resource pool is built.

LSR
specifies a local shared resource pool. A maximum of 256 data and 256
index resource pools can be built in one address space. Each resource
pool must be built individually.

DATA
specifies that a data resource pool be built. LSR must also be specified or
defaulted, and this resource pool must exist before an index pool with the
same shared pool ID can be built.

INDEX
specifies an index resource pool be built. LSR must also be specified or
defaulted. INDEX must be specified to create a separate index resource
pool. If it is not specified, both data and index components use the data
pools. A data pool must already exist before an index pool with the same
shared pool ID can be built.

For BLDVRP TYPE=INDEX, the following parameters are ignored:

 FIX=IOB
 KEYLEN

RMODE31 (as it affects the setting of the I/O related control blocks)
 STRNO

The FIX=IOB, KEYLEN, RMODE31, and STRNO parameters specified for
BLDVRP=DATA are used instead. For example:

BLDVRP TYPE=INDEX, x
 FIX=IOB, x
 KEYLEN=4, x
 RMODE31=ALL, x
 STRNO=1ð

results in the FIX, KEYLEN, and STRNO parameters being reset to the
values specified in BLDVRP TYPE=DATA. The buffer pools reside above

24 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BLDVRP

16 megabytes but the control blocks are at the residence specified by
BLDVRP TYPE=DATA.

GSR
specifies a global shared resource pool.

Only one BLDVRP TYPE=GSR may be issued for the system for each of
the protection keys 0 through 7. The program that issues BLDVRP
TYPE=GSR must be in supervisor state with protection key 0 to 7.

Example 1: Obtaining an LSR Pool above 16 Megabytes
This example shows how both a local shared resource pool and a BLDVRP
parameter list residing above 16 megabytes are obtained.

POOL1 BLDVRP BUFFERS=(1ð24(5)), x
 STRNO=4, x
 TYPE=LSR, x
 MODE=31, x
 RMODE31=ALL

The BLDVRP parameters are:

� BUFFERS specifies there is one buffer pool in the resource pool. This buffer
pool contains 5 buffers, and each of these buffers is 1024 bytes.

� STRNO specifies 4 place holders are required for the data sets to share the
resource pool.

� TYPE specifies a local resource pool is built.

� MODE specifies a parameter list is generated that may reside above or below
16 megabytes. The value of 31 must be coded if the parameter list resides
above 16 megabytes.

� RMODE31 specifies the location in storage for the I/O buffers and I/O related
control blocks of the LSR pool.

To connect the LSR pool to the data set, you must code the LSR and SHRPOOL
parameters on the ACB. See “ACB—Generate an Access Method Control Block at
Assembly Time” on page 12.

Example 2: Request for Separate Data and Index Resource Pools
This example shows how the two separate data and index resource pools with an
identification equal to 3 are created.

POOL1 BLDVRP BUFFERS=(2ð48(4)), x
 TYPE=(LSR,DATA), x
 SHRPOOL=3, x
 STRNO=2, x
 RMODE31=ALL
\

LTR R15,R15 Check return code.

BNZ ERROR Do not build index if error.
\

POOL2 BLDVRP BUFFERS=(1ð24(5)), x
 TYPE=(LSR,INDEX), x
 SHRPOOL=3, x
 STRNO=2, x
 RMODE31=ALL

 Chapter 3. VSAM Macro Descriptions and Examples 25

 BLDVRP

Note: POOL1 must be created first because the data pool must exist before the
index pool with the same shared pool ID can be built. Also, only one data
and one index pool can be built for a shared pool ID.

 BLDVRP—List Form
The format of the list form of BLDVRP is:

Note: If FIX is specified, DLVRP must be issued by the same task that issues
BLDVRP. STRNO is optional in the list form of BLDVRP, but, if it is not
specified, it must be specified in the execute form.

[label] BLDVRP BUFFERS=(size(abs expression[,Hiperspace]),
size(abs expression[,Hiperspace]),...)
,MF=L
[,FIX={BFR|IOB|(BFR,IOB)}]
[,KEYLEN= length]
[,RMODE31={ALL|BUFF|CB|NONE }]
[,SHRPOOL={0 |n}]
[,MODE={24|31}]
[,STRNO=abs expression]
[,TYPE={LSR |(LSR,DATA|INDEX)|GSR}]

 BLDVRP—Execute Form
The format of the execute form of BLDVRP is:

Note: The address is the address of the parameter list built by a list form of
BLDVRP. If you use register notation, you may use register 1, and a
register between 2 and 12. Register 1 is used to pass the parameter list to
VSAM. BUFFERS may not be specified in the execute form of BLDVRP,
because this parameter affects the length of the parameter list.:

If MODE=31 was specified on the list form, MODE=31 must be specified on the
execute form. The same is true for MODE=24.

Of the execute-form BLDVRP parameters listed above, the RMODE31 (or LOC)
specification does not need to be given again on the execute form if it is specified
on the list form. All of the other parameters must be specified again in the execute
form if they are specified on the list form. Otherwise, their default values override
the values specified on the list form.

[label] BLDVRP MF=(E,address)
[,KEYLEN= length]
[,RMODE31={ALL|BUFF|CB|NONE}]
[,SHRPOOL=abs expression]
[,MODE={24|31}]
[,STRNO=abs expression]
[,TYPE={LSR |(LSR,DATA|INDEX)|GSR}]

26 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CHECK

CHECK—Wait for Completion of a Request
Use the CHECK macro to wait for completion of an I/O request.

The format of the CHECK macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the CHECK
macro.

RPL=address
specifies the address of the request parameter list that defines the request. You
may specify the address in register notation (using a register from 1 through
12, enclosed in parentheses) or specify it with an expression that generates a
valid relocatable A-type address constant.

[label] CHECK RPL=address

Example 1: Check Return Codes after an Asynchronous Request
In this example, return codes are checked after an asynchronous request. The
CHECK macro is used to cause an exit to be taken if there is a logical or physical
error or if the end of the data set is reached.

REQPARMS RPL OPTCD=ASY
 ...
 GET RPL=REQPARMS

LTR 15,15 Was the request completed successfully?
BNZ REJECTED Zero means the request was accepted. x

If not accepted, register 15 contains x
4: REQPARMS is active for another x
request. Continue working on something x
not dependent on the request.

CHECK RPL=REQPARMS CHECK would cause one of the three x
exits to be taken if there was a logi- x
cal or physical error or if the end of x
the data set was reached and an active x
exit list exists.

LTR 15,15 Test return indication is register 15.

BNZ FAILURE Zero means the request completed x
successfully. If it failed, register x
15 contains 8 or 12: there was x
a logical or a physical error.

 ...

REJECTED ...

FAILURE ...

Unless you provide exit routines that terminate processing, always test register 15
after the CHECK. If a routine returns to VSAM, register 15 is reset and control is
passed back to your program immediately after the CHECK. An error analysis
routine normally issues SHOWCB or TESTCB to examine the feedback field in the
request parameter list, so that, when your processing program gets control back, it
does not have to analyze the errors—but it may alter its processing if there was an
error. If you do not provide an error analysis routine, your program can issue

 Chapter 3. VSAM Macro Descriptions and Examples 27

 CHECK

SHOWCB or TESTCB to analyze an error when it gets control back following the
CHECK.

Example 2: Check Return Codes after a Synchronous Request
With synchronous processing, you should test register 15 after the request because
the request may not have been accepted (register 15 contains 4) or because an
error might have occurred (8 or 12):

 GET RPL=REQPARMS
LTR 15,15 Was request completed successfully?
BNZ REJFAIL If branch is not taken, was request x

accepted and completed successfully?
 ...
REJFAIL ...

Example 3: Overlap Processing
In this example, the CHECK macro is used to wait for completion of a request
before continuing to other processing. Access is asynchronous.

BLOCK ACB
LIST RPL ACB=BLOCK, Asynchronous access. x
 AREA=WORK, x
 AREALEN=5ð, x
 OPTCD=ASY
 ...

LOOP GET RPL=LIST x
 LTR 15,15 x
 BNZ NOTACCEP

Do other processing:

CHECK RPL=LIST Suspends your processing to wait for com- x
pletion of GET if necessary and to cause x
VSAM to show return codes.

 LTR 15,15
 BNZ ERROR

Process the record:

 B LOOP
NOTACCEP ... Request was not accepted.

ERROR ... Request failed.
 ...
WORK DS CL5ð Work area.

After issuing the request, make sure that VSAM accepted it before you go on to
other processing. When you have done as much other processing as you can,
issue the CHECK macro. VSAM does not give you back control until the request is
complete.

If you do not want to issue CHECK until you know the request is complete, use the
ECB parameter of the RPL macro or the IO=COMPLETE parameter of the
TESTCB macro. After you issue the CHECK, VSAM immediately returns a code
and takes an exit, if necessary. See “RPL—Generate a Request Parameter List at
Assembly Time” on page 85 and “GENCB—Generate a Request Parameter List at
Execution Time” on page 49 for information on the ECB parameter.

28 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CHECK

Example 4: Suspend a Request for Many Records
In this example, a CHECK macro is issued for the first request parameter list in a
chain of parameter lists. If an error occurred for one of the request parameter lists
in the chain and you have supplied error analysis routines, VSAM takes a LERAD
or SYNAD exit before it returns control to your program after the CHECK.

FIRST RPL ACB=BLOCK, x
 AREA=AREA1, x
 AREALEN=5ð, x
 NXTRPL=SECOND, x
 OPTCD=ASY

SECOND RPL ACB=BLOCK, x
 AREA=AREA2, x
 AREALEN=5ð, x
 NXTRPL=THIRD, x
 OPTCD=ASY

THIRD RPL ACB=BLOCK, Last list does not indicate a next list. x
 AREA=AREA3, x
 AREALEN=5ð, x
 OPTCD=ASY
 ...
LOOP GET RPL=FIRST Request gives address of first request x
 parameter list.
 LTR 15,15
 BNZ NOTACCEP

Do other processing:

 CHECK RPL=FIRST
 LTR 15,15
 BNZ ERROR

Process the three records retrieved by the GET:

 B LOOP
NOTACCEP ... Request wasn't accepted.

ERROR ... Display feedback field (FIELDS=FDBK) of x
each request list to determine which x
one had an error.

AREA1 DS CL5ð A single GET request causes VSAM to put x
a record in AREA1, AREA2, and AREA3.

AREA2 DS CL5ð

AREA3 DS CL5ð

After the CHECK, register 15 is set to indicate the status of the request. A code of
0 indicates that no error was associated with any of the request parameter lists.
Any other code indicates that an error occurred for one of the request parameter
lists. You should issue a SHOWCB macro for each request parameter list in the
chain to find out which one had an error. VSAM does not process any of the
request parameter lists beyond the one with an error.

 Chapter 3. VSAM Macro Descriptions and Examples 29

 CLOSE

CLOSE—Disconnect Program and Data
Use the CLOSE macro to disconnect the program and data.

The format of the CLOSE macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the CLOSE
macro.

address
specifies the address of the access method control block or DCB for each data
set to be closed. You may specify the address in register notation (using a
register from 2 through 12—in parentheses) or specify it with an expression
that generates a valid relocatable A-type address constant. If you specify only
one address with a register, you must enclose the expression identifying the
register in two sets of parentheses: for example, CLOSE ((2)).

options
specifies options parameters for use only in closing non-VSAM data sets. If
any options are specified with the address of an access method control block,
VSAM ignores them.

Note: Because the CLOSE parameters are positional, include a comma for
options (even if you do not specify options) before a subsequent
parameter.

MODE={24|31}
specifies the format of the CLOSE parameter list to be built.

24 specifies a standard form (24-bit) parameter list address be built. This
parameter list must reside below 16 megabytes and contain the address of
ACBs residing below 16 megabytes. The caller, however, may be above 16
megabytes. This is the default parameter list format.

31 specifies a long form (31-bit) parameter list address be built. This list can
reside above or below 16 megabytes. This value must be coded if the
parameter list resides above 16 megabytes or contains the address of an
VSAM/VTAM ACB residing above 16 megabytes.

TYPE=T
specifies VSAM is to complete outstanding I/O operations and update the
catalog, but not disconnect the program from the data.

You can issue a temporary CLOSE macro to cause VSAM to complete
outstanding I/O operations, put back into the catalog the updated information
brought into virtual storage when the data set was opened, and write records in
the SMF data set if you are using SMF. A temporary CLOSE does not
disconnect the program from the data set, so your program can continue to
process the data set without issuing an OPEN macro again.

You must close and reopen a newly allocated VSAM data set before you can
issue noncreate requests. A temporary close is not adequate for this purpose.

[label] CLOSE (address[,[(options)][,...]])
[,MODE={24|31}]
[,TYPE=T]

30 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DLVRP

The TYPE=T option does not release DASD space.

Note: If you are sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all
RPLs before you issue a CLOSE or CLOSE TYPE=T. Otherwise,
concurrent data set I/O activity will cause unpredictable results during a
close.

Example: CLOSE Macro
This example shows how to close an ACB with a parameter list that may reside
above 16 megabytes.

BLOCK1 ACB .
 .

RMODE31=ALL VSAM control blocks and I/O buffers x
 . may be above 16 megabytes.
 .

OPEN BLOCK1, OPEN/CLOSE parameter list may reside x
MODE=31 above 16 megabytes.

 CLOSE BLOCK1, x
 MODE=31, x
 TYPE=T

The CLOSE parameters are:

� MODE=31 is required if the OPEN/CLOSE parameter list resides above 16
megabytes or if the ACB resides above 16 megabytes.

� TYPE indicates a temporary CLOSE. This causes VSAM to complete
outstanding I/O operations, put back into the catalog the updated information
that was brought into virtual storage when the data set was opened, and write
records in the SMF data set if you are using SMF.

DLVRP—Delete VSAM Resource Pool
The DLVRP macro has a standard form and an execute form. The standard form
builds a parameter list and passes control to VSAM to delete the resource pool.

The format of the DLVRP macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the DLVRP
macro.

TYPE={LSR|GSR}
specifies the type of resource pool to be deleted: local (LSR) or global (GSR).
When deleting an LSR pool, the number specified on the SHRPOOL parameter
indicates which LSR pool is deleted. If both a data resource pool and an index
resource pool have the same SHRPOOL number, both are deleted. The
program that issues DLVRP TYPE=GSR must be in supervisor state with
protection key 0 to 7.

[label] DLVRP TYPE={LSR|GSR}
[,MODE={24|31}]
[,SHRPOOL={0 |abs expression}]

 Chapter 3. VSAM Macro Descriptions and Examples 31

 DLVRP

MODE={24|31}
specifies the format of the DLVRP parameter list to be generated.

24 specifies that a standard form (24-bit) parameter list address be built. This
parameter list must reside below 16 megabytes and contain the address of
ACBs residing below 16 megabytes. The caller, however, may be above 16
megabytes. This is the default parameter list format.

31 specifies that a long form (31-bit) parameter list address be built. This list
can reside above or below 16 megabytes. This parameter value must be
coded if the parameter list resides above 16 megabytes or contains the
address of a VSAM/VTAM ACB residing above 16 megabytes.

SHRPOOL={0|abs expression}
specifies the identification number of the shared resource pool to be deleted.
Valid only when TYPE=LSR is also specified. The DLVRP parameter list may
reside above or below 16 megabytes.

0 specifies the shared pool with the identification of 0. This is the default LSR
pool identification number.

abs expression
specifies the shared pool with the identification of abs expression where
abs expression is a number from 0 to 255.

Example: DLVRP Macro
This example shows how an LSR pool with a parameter list that may reside above
16 megabytes and identification number other than 0 is deleted.

DELPOOL DLVRP TYPE=LSR, x
 MODE=31, x
 SHRPOOL=1

The DLVRP parameters are:

� TYPE specifies that an LSR pool be deleted.

� MODE=31 specifies the parameter list may reside above or below 16
megabytes.

� SHRPOOL=1 specifies that both the data resource pool and the index resource
pool (if any), with the identification number of 1, are to be deleted.

 DLVRP—Execute Form
The format of the execute form of DLVRP is:

If MODE=31 in the BLDVRP macro, then MODE=31 is required in the DLVRP
macro.

Note: There is no list form for DLVRP, because DLVRP works with BLDVRP:
DLVRP uses the parameter list associated with BLDVRP. The address is
the address of the parameter list built by a list form of BLDVRP. If you use

[label] DLVRP MF=(E,address)
[,SHRPOOL=abs expression]
[,MODE={24|31}]
,TYPE={LSR|GSR}

32 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ENDREQ

register notation, use register 1 to pass the address of the parameter list to
VSAM.

ENDREQ—Terminate a Request
Use the ENDREQ macro to end a request, such as releasing exclusive control of a
control interval containing a record.

The format of the ENDREQ macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the ENDREQ
macro.

RPL=address
specifies the address of the request parameter list that defines the request.
Specify the address either in register notation (using a register from 1 through

| 12, enclosed in parentheses) or as an RX-type address.

| Note: The ENDREQ macro must not be issued when records are being loaded
| into a VSAM data set (load mode). ENDREQs issued while in load mode
| are not processed. ENDREQ will wait for the target RPL to post and, for
| that reason, it should not be issued in an attempt to terminate a hung
| request.

[label] ENDREQ RPL=address

Example: Release Positioning for Another Request
In this example, the ENDREQ macro is used to cause VSAM to release exclusive
control of a control interval containing a record. There are two request parameter
lists, both of which require VSAM to be able to remember its position until VSAM is
explicitly requested to forget its position.

BLOCK ACB MACRF=(SEQ, x
 DIR),STRNO=2
SEQ RPL ACB=BLOCK, VSAM must remember its position. x
 OPTCD=SEQ
DIRUPD RPL ACB=BLOCK, VSAM must remember its position and maintain x

OPTCD=(DIR,UPD) exclusive control until explicitly requested x
. to forget it by PUT or ENDREQ.

 .
LOOP GET RPL=SEQ VSAM now remembers its position for x

this request only while it is
LTR 15,15 processing the request.

 BNZ ERROR
GET RPL=DIRUPD VSAM can remember its position for this x

 request.
LTR 15,15 The control interval will be placed in x

exclusive control until either
BNZ ERROR ENDREQ or PUT UPD is issued.

Decide whether to update the record:

 Chapter 3. VSAM Macro Descriptions and Examples 33

 ERASE

B FORGET No; do not update the record.
PUT RPL=DIRUPD Yes; update the record, causing VSAM x

to forget its position for DIRUP.
 LTR 15,15
 BNZ ERROR
 B LOOP
FORGET ENDREQ RPL=DIRUPD Cause VSAM to forget its position for DIRUPD.

LTR 15,15 Release exclusive control.
 BNZ ERROR
 B LOOP
ERROR xxx Request wasn't accepted or failed.

The use of ENDREQ shown here causes VSAM to release exclusive control of the
control interval for a record. When PUT is issued after a DIRUPD GET request,
ENDREQ need not be issued, because PUT causes VSAM to release exclusive
control (the next DIRUPD GET does not depend on VSAM's remembering its
position). Another result of ENDREQ is that current buffers are written if they have
been modified.

To cause VSAM to give up its position associated with a chain of request
parameter lists, specify the first request parameter list in the chain in your ENDREQ
macro.

ENDREQ can also be used to cancel an asynchronous request, rather than
suspending processing with CHECK.

Because VSAM remembers its position after a direct GET with OPTCD=UPD, LOC
or (NUP, NSP), if no PUT or ENDREQ follows, you can switch to sequential access
and use the positioning for a GET.

Note: If you are sharing subtasks or if you have issued an asynchronous request
for access to a data set, you must issue a CHECK or an ENDREQ on all
RPLs before you issue a CLOSE or CLOSE TYPE=T. Otherwise,
concurrent data set I/O activity causes unpredictable results during a close.

ERASE—Delete a Record
Use the ERASE macro to delete VSAM records. With ERASE processing of
key-sequenced data sets or variable-length RRDS, VSAM attempts to make the
control interval available to the control area when the last record in the control
interval is erased. Thus, key-sequenced data set control intervals can be reused for
new records whose keys fall anywhere within the control area's range of keys. The
high key control interval of a control area is never reclaimed.

Variable-length RRDS control intervals can be reused for new records. The new
variable-length RRDS record is inserted where the old record was, and the relative
record number of the deleted record is reused for the new record.

ERASE is not supported for HFS files. You receive an error if you specify ERASE
against an HFS file.

The format of the ERASE macro is:

[label] ERASE RPL=address

34 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ERASE

label
specifies 1 to 8 characters that provide a symbolic address for the ERASE
macro.

RPL=address
specifies the address of a request parameter list that defines the request. You
may specify the address in register notation (using a register from 1 through
12, enclosed in parentheses) or specify it with an expression that generates a
valid relocatable A-type address constant.

Example 1: Keyed-Direct Deletion (KSDS, RRDS)
In this example, GET and ERASE macros are used to retrieve and delete records.
Not every retrieved record is deleted. The search argument is a full key (5 bytes),
compared equal.

DELETE ACB MACRF=(KEY,DIR, x
 OUT)

LIST RPL ACB=DELETE, x
 AREA=WORK, x
 AREALEN=5ð, x
 ARG=KEYFIELD, x
 OPTCD=(KEY,DIR, x

. SYN,UPD, UPD indicates deletion. x
 . MVE,FKS, x
 . KEQ)
 .
LOOP MVC KEYFIELD,source Search argument for retrieval, x

from table or transaction record.
 GET RPL=LIST
 LTR 15,15
 BNZ ERROR

Decide whether to delete the record.

BE LOOP No; retrieve the next record.
ERASE RPL=LIST Yes; delete the record.

 LTR 15,15
 BNZ ERROR
 B LOOP
ERROR ... Request not accepted, or failed.
WORK DS CL5ð Examine the data record here.
KEYFIELD DS CL5 Search argument.

When you retrieve a record for deletion (OPTCD=UPD, same as retrieval for
update), VSAM is positioned at the record retrieved, in anticipation of a succeeding
ERASE (or PUT) request for that record. However, you are not required to issue
such a request. Another GET request nullifies any previous positioning for deletion
or update.

Keyed-sequential retrieval for deletion varies from direct in that it does not use a
search argument (except for possible use of the POINT macro). Skip-sequential
retrieval for deletion (OPTCD=(SKP,UPD)) has the same effect as direct, but it is
faster or slower depending on the number of control intervals separating the
records being retrieved.

 Chapter 3. VSAM Macro Descriptions and Examples 35

 ERASE

Example 2: Addressed-Sequential Deletion (ESDS, KSDS)
In this example, the ERASE macro is used to delete records from a key-sequenced
data set. Not every record retrieved for deletion is deleted. The POINT macro is
used to skip records.

DELETE ACB MACRF=(ADR,SEQ, x
 OUT)

REQUEST RPL ACB=DELETE, x
 AREA=WORK, x
 AREALEN=1ðð, x
 ARG=ADDR, x
 OPTCD=(ADR,SEQ, x

ASY,UPD,MVE) UPD indicates deletion.
 .
LOOP ... Decide whether you need to skip x

to another position (forward or x
 backward).

B RETRIEVE No; bypass the POINT.

MVC ADDR,source Yes; move search argument for x
POINT into search-argument field.

POINT RPL=REQUEST Position VSAM to the record to x
be retrieved next.

 LTR 15,15
 BNZ ERROR
 CHECK RPL=REQUEST

 LTR 15,15
 BNZ ERROR
RETRIEVE GET RPL=REQUEST
 LTR 15,15
 BNZ ERROR
 CHECK RPL=REQUEST
 LTR 15,15
 BNZ ERROR

Decide whether to delete the record.

BE LOOP No; skip ERASE and CHECK.
ERASE RPL=REQUEST Yes; delete the record.

 LTR 15,15
 BNZ ERROR
 CHECK RPL=REQUEST
 LTR 15,15
 BNZ ERROR
 B LOOP
ERROR ... Request not accepted, or failed.
 .
ADDR DS F RBA search argument for POINT.
WORK DS CL1ðð Work area.

Addressed deletion is allowed only for a key-sequenced data set. The records of an
entry-sequenced data set are fixed. When records are deleted from a
key-sequenced data set using addressed deletion, the index is not updated.

36 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 EXLST

EXLST—Generate an Exit List at Assembly Time
Use the EXLST macro to generate an exit list at assembly time. Values for EXLST
macro subparameters can be specified as absolute numeric expressions, character
strings, codes, and expressions that generate valid relocatable A-type address
constants.

Note: See DFSMS/MVS Using Data Sets for the factors that determine the
addressing mode and the parameter list residency mode set when the exit
routine gets control.

The format of the EXLST macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the established
exit list.

AM=VSAM
specifies that the access method using the control block is VSAM.

EODAD=(address[,A |N][,L])
JRNAD=(address[,A |N][,L])
LERAD=(address[,A |N][,L])
SYNAD=(address[,A |N][,L])
UPAD=(address[,A |N][,L])

RLSWAIT=(address[,A |N][,L])
specify that you are supplying a routine for the exit specified.

For more information about user exit routines, see DFSMS/MVS Using Data
Sets.

The exits and values that can be specified for these routines are:

EODAD
specifies that an exit is provided for special processing when the end of a
data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journalizing transactions as you
process data records. For RLS, JRNAD is not supported and you receive
an error if you open the ACB. This parameter has no effect for HFS files.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

[label] EXLST [AM= VSAM]
[,EODAD= (address[,A|N][,L])]
[,JRNAD=(address[,A |N][,L])]
[,LERAD=(address[,A |N][,L])]
[,SYNAD=(address[,A |N][,L])]
[,UPAD=(address[,A |N][,L])]
[RLSWAIT=(address[,A |N][,L])]

 Chapter 3. VSAM Macro Descriptions and Examples 37

 EXLST

UPAD
specifies that an exit is provided for user processing during a VSAM
request. The GENCB, MODCB, SHOWCB, and TESTCB macros do not
support the UPAD user exit routine. For RLS, UPAD is ignored and the
RLSWAIT exit is used instead. This parameter has no effect for HFS files.

RLSWAIT
For RLS, this exit is used instead of UPAD. If you specify a UPAD exit for
RLS. it is ignored. The RLSWAIT exit is specified on an ACB basis and is
entered in 31 bit mode. When the exit is to be used for a record
management request the RPL must specify OPTCD=(SYN,WAITX). The
RLSWAIT exit is entered after an asynchronous execution unit is scheduled
to process the request. The exit is intended for those applications which
issue VSAM RLS. requests and can not tolerate VSAM suspending the
execution unit which issued the record management request.

address
specifies the address of a user-supplied exit routine or an I/O prevention
identifier. The address must immediately follow the equal sign.

A|N
specifies that the exit routine is active (A) or not active (N). VSAM does not
enter a routine whose exit is marked not active.

L specifies that the address is an 8-byte field containing the name of an exit
routine in a partitioned data set identified by a JOBLIB or STEPLIB DD
statement or in SYS1.LINKLIB. VSAM loads the exit routine for exit processing.
If L is omitted, the address gives the entry point of the exit routine in virtual
storage, and the exit routine is entered in the addressing mode of the VSAM
caller.

Note: The EXLST macro generates an exit list with each entry 5 bytes in
length. You must consider the proper alignment of any subsequent
data.

Example: EXLST Macro
An EXLST macro is used to identify exit routines provided for analyzing logical and
physical errors. The label of the EXLST macro (EXITS) is used in an ACB or
GENCB macro that generates an access method control block to associate the exit
list with an access method control block. The exit list generated by this example is
built when the program is assembled.

EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic address x
LERAD=LOGICAL, of the exit list. x

 SYNAD=(ROUTNAME,L)
ENDUP EODAD routine.
LOGICAL LERAD routine.
ROUTNAME DC C'PHYSICAL' Pad shorter names with x

blanks:C'SYN ' or CL8'SYN'.

The EXLST macro's parameters are:

� EODAD specifies that the end-of-data routine is located at ENDUP and is not
active.

� LERAD specifies that the logical error routine is located at LOGICAL and is
active.

38 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—ACB

� SYNAD specifies that the physical error routine's name is located at
ROUTNAME.

GENCB—Generate an Access Method Control Block at Execution Time
The format of the GENCB macro used to generate an access method control block
is:

The subparameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the GENCB
macro.

BLK=ACB
specifies that you are generating an access method control block.

[label] GENCB BLK=ACB
[,AM=VSAM]
[,BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,COPIES=abs expression]
[,DDNAME=character string]
[,EXLST= address]
[,LENGTH=abs expression]
[,LOC=BELOW |ANY]
[,MACRF=([ADR][,CNV] [,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])]
[,MAREA= address]
[,MLEN=abs expression]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE }]
[,SHRPOOL={0 |abs expression}]
[,STRNO=abs expression]
[,RLSREAD={NRI|CR|NORD }]
[,WAREA= address]

 Chapter 3. VSAM Macro Descriptions and Examples 39

 GENCB—ACB

AM=VSAM
specifies that the access method using this control block is VSAM.

BSTRNO=abs expression
specifies the number of strings initially allocated for access to the base cluster
of a path. BSTRNO must be a number between 0 and 255. The default is
STRNO. BSTRNO is ignored if the object being opened is not a path. If the
number specified for BSTRNO is insufficient, VSAM dynamically extends the
number of strings as needed for the access to the base cluster. BSTRNO can
also influence performance. The VSAM control blocks for the set of strings
specified by BSTRNO are allocated on contiguous virtual storage, whereas this
is not guaranteed for the strings allocated by dynamic extension.

For RLS, BSTRNO is ignored. This parameter has no effect for HFS files.

BUFND=abs expression
specifies the number of I/O buffers VSAM uses for transmitting data between
virtual and auxiliary storage. A buffer is the size of a control interval in the data
component. BUFND must be a number between 0 and 65535. The minimum
number you may specify is 1 plus the number specified for STRNO (if you omit
STRNO, BUFND must be at least 2, because the default for STRNO is 1). The
number can be supplied through the JCL DD AMP parameter and through the
macro. The default is the minimum number required. A larger number for
BUFND can improve the performance of sequential access.

For RLS, BUFND is ignored. This parameter has no effect for HFS files.

BUFNI=abs expression
specifies the number of I/O buffers VSAM uses for transmitting index entries
between virtual and auxiliary storage for keyed access. A buffer is the size of a
control interval in the index. BUFNI must be a number between 0 and 65535.
The minimum number is the number specified for STRNO (if you omit STRNO,
BUFNI must be at least 1, because the default for STRNO is 1). You can
supply the number through the JCL DD AMP parameter and through the
macro. The default is the minimum number required. A larger number for
BUFNI can improve the performance of keyed-direct retrieval.

For RLS, BUFNI is ignored. This parameter has no effect for HFS files.

BUFSP=abs expression
specifies the maximum number of bytes of virtual storage used for the data and
index I/O buffers. VSAM gets the storage in your program's address space. If
you specify less than the amount of space specified in the BUFFERSPACE
parameter of the DEFINE command when the data set was defined, VSAM
overrides your BUFSP specification upward to the value specified in
BUFFERSPACE. (BUFFERSPACE, by definition, is the least amount of virtual
storage that is ever provided for I/O buffers.) You can supply BUFSP through
the JCL DD AMP parameter and through the macro. If you do not specify
BUFSP in either place, the amount of storage used for buffer allocation is the
largest of:

� The amount specified in the catalog (BUFFERSPACE),

� The amount determined from BUFND and BUFNI, or

� The minimum storage required to process the data set with its specified
processing options.

40 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—ACB

If BUFSP is specified and the amount is smaller than the minimum amount of
storage required to process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by
BUFND and BUFNI. If the BUFSP amount is greater than the amount called for
by BUFND and BUFNI, the extra space is allocated as follows:

� When MACRF indicates direct access only, additional index buffers are
allocated.

� When MACRF indicates sequential access, one additional index buffer and
as many data buffers as possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and BUFNI,
the number of data and index buffers is decreased as follows:

� When MACRF indicates direct access only, the number of data buffers is
decreased to not less than the minimum number. Then, if required, the
number of index buffers is decreased until the amount called for by BUFND
and BUFNI complies with the BUFSP amount.

� When MACRF indicates sequential access, the number of index buffers is
decreased to not less than 1 more than the minimum number. Then, if
required, the number of data buffers is decreased to not less than the
minimum number. If still required, 1 more is subtracted from the number of
index buffers.

� Neither the number of data buffers nor the number of index buffers is
decreased to less than the minimum number.

If the index does not exist or is not being opened, only BUFND, and not
BUFNI, enters into these calculations.

For RLS, BUFSP is ignored. This parameter has no effect for HFS files.

COPIES=abs expression
specifies the number of copies of the access method control block VSAM
generates. All the copies are identical. Use MODCB to tailor the individual
copies for particular data sets and processing. MODCB is described in
“MODCB—Modify an Access Method Control Block” on page 66.

DDNAME=character string
specifies 1 to 8 characters that identify the data set you want to process by
specifying the JCL DD statement for the data set. You may omit DDNAME and
provide it through the MODCB macro before opening the data set. MODCB is
described in “MODCB—Modify an Access Method Control Block” on page 66.

EXLST=address
specifies the address of a list of addresses of exit routines you are providing.
The list is established by the EXLST or GENCB macro. If you use the EXLST
macro, you can specify its label here as the address of the exit list. If you use
GENCB, you can specify the address returned by GENCB in register 1.
Omitting this parameter indicates that you have no exit routines. VSAM user
exit routines are described in DFSMS/MVS Using Data Sets.

LENGTH=abs expression
specifies the length, in bytes, of the area, if any, you are supplying for VSAM to
generate the access method control blocks. (See the WAREA parameter.) The
LENGTH value cannot exceed 65535 (X'FFFF').

 Chapter 3. VSAM Macro Descriptions and Examples 41

 GENCB—ACB

LOC={BELOW |ANY}

BELOW
specifies that VSAM is to construct an ACB in an area of virtual storage
below 16 megabytes at execution time. This is the default.

ANY
specifies that VSAM is to construct an ACB in an area of virtual storage
above 16 megabytes, if possible, at execution time.

MACRF=([ADR][,CNV][,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
[,NUB|UBF])

specifies the kinds of processing you will do with the data set. The
subparameters must be significant for the data set. For example, if you specify
keyed access for an entry-sequenced data set, you cannot open the data set.
You must specify all the types of access you are going to use, whether you use
them concurrently or by switching from one to the other. The subparameters
are shown in Figure 2 on page 15. They are arranged in groups, and each
group has a default value (shown by underlining). You may specify
subparameters in any order. You may specify both ADR and KEY to process a
key-sequenced data set. You may specify both DIR and SEQ; with keyed
access, you may specify SKP as well. If you specify OUT and want merely to
retrieve some records and also update, delete, or insert others, you need not
also specify IN.

MAREA=address
specifies the address of an optional OPEN/CLOSE or TYPE=T option (CLOSE
macro) message area. See “OPEN/CLOSE Message Area for Multiple Reason
or Attention Messages” on page 132.

MAREA is ignored for RLS processing.

MLEN=abs expression
specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE
macro) message area.

MLEN is ignored for RLS processing.

PASSWD=address
specifies the address of a field that contains the highest-level password
required for the types of access indicated by the MACRF parameter. The first
byte of the field contains the length (in binary) of the password (maximum of 8
bytes). Zero indicates that no password is supplied. If the data set is password
protected and you do not supply a required password in the access method

42 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—ACB

control block, VSAM may give the console operator the opportunity to supply it
when you open the data set. This parameter has no effect for HFS files.

RMODE31={ALL|BUFF|CB|NONE}
specifies where VSAM OPEN is to obtain virtual storage (above or below 16
megabytes) for control blocks and I/O buffers.

The values specified by the RMODE31 parameter only have an effect on
VSAM at the setting just before an OPEN is issued. At all other times, changing
these values has no effect on the residency of the control blocks and I/O
buffers.

The virtual storage location of the ACB is independent of the RMODE31
parameter. An ACB may reside either above or below 16 megabytes.

RMODE31 is ignored for RLS processing.

ALL
specifies both VSAM control blocks and I/O buffers are obtained above 16
megabytes.

BUFF
specifies only VSAM I/O buffers are obtained above 16 megabytes.

CB
specifies only VSAM control blocks are obtained above 16 megabytes.

NONE
specifies both VSAM control blocks and I/O buffers are obtained below 16
megabytes. This is the default.

SHRPOOL={abs expression|0}
specifies the identification number of the resource pool used for LSR
processing. SHRPOOL must be a number between 0 and 255. The default is
SHRPOOL=0. For RLS, SHRPOOL is ignored. This parameter has no effect for
HFS files.

STRNO=abs expression
specifies the number of requests requiring concurrent data set positioning
VSAM is prepared to handle. A request is defined by a given request
parameter list or chain of request parameter lists. STRNO must be a number
between 1 and 255. See “RPL—Generate a Request Parameter List at
Assembly Time” on page 85 and “GENCB—Generate a Request Parameter
List at Execution Time” on page 49 for information on request parameter lists.
For RLS, STRNO is ignored and strings are dynamically acquired up to a limit
of 1024. STRNO > 1 is not supported for HFS files and, if specified with a value
greater than 1, results in an open failure.

RLSREAD={NRI|CR|NORD }
RLSREAD (for RLS), specifies the read integrity options that apply to GET
requests issued against this ACB. This parameter overrides the read integrity
options specified in the RLS JCL parameter. Read integrity options can also be
specified on the GET request, when they override the RLSREAD specification.

NRI
specifies no read integrity.

CR
specifies consistent read integrity.

 Chapter 3. VSAM Macro Descriptions and Examples 43

 GENCB—ACB

NORD
species the read integrity option used is determined either by the RLS JCL
specification or by options specified on the GET request.

For non-RLS, this parameter is ignored.

WAREA=address
specifies the address of an area in which to generate the access method
control blocks.

The area must begin on a fullword boundary.

This parameter is paired with the LENGTH parameter. You must supply the
LENGTH parameter if you specify an area address.

Note: If you do not specify an area in which the access method control block
is to be generated, VSAM obtains virtual storage space for the area (as
specified by the LOC=keyword). Subpool 0 will be requested under the
user's key and state. Users executing in key 0 and supervisor state will
actually be assigned subpool 252. VSAM returns the address of the
area containing the control blocks in register 1 and the length of the
area in register 0. You can find out the length of each control block by
dividing the length of the area by the number of copies. The address of
each control block can then be calculated by this offset from the
address in register 1. You can find the length of an access method
control block with the SHOWCB macro.

If you are generating control blocks by issuing several GENCBs, specifying an
area (WAREA and LENGTH parameters) for them allows you to address all of
them with one base register and to avoid repetitive requests for virtual storage.

Example: GENCB Macro (Generate an Access Method Control Block)
In this example, a GENCB macro is used to identify a data set to open and to
specify the types of processing to perform. This example specifies that the space
for the control block be obtained above 16 megabytes. The access method control
block generated by this example is built when the program is executed.

GENCB GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM gets the x
BUFND=4,BUFNI=3, storage for it, because the x
BUFSP=19456, WAREA LENGTH parameters have x

 DDNAME=DATASETS, been omitted. x
 EXLST=EXITS, x
 LOC=ANY, x
 MACRF=(KEY,DIR, x
 SEQ,OUT), x
 RMODE31=ALL, x
 STRNO=2

ST 1,ACBADDR Save the address of the access x
method control block.

ACBADDR DS A The address of the access method x
control block is saved in ACBADDR.

The GENCB macro’s parameters are:

� BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for
index entries. BUFSP specifies 19456 bytes of buffer space, enough space to
accommodate control intervals of data that are 4096 bytes and of index entries
that are 1024 bytes.

44 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—ACB

� DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

� EXLST specifies that the exit list associated with this access method control
block is named EXITS.

� LOC specifies that VSAM obtain virtual storage for the ACB from an area that
may be above 16 megabytes.

� MACRF specifies keyed direct and keyed sequential processing for both
insertion and update.

� RMODE31 specifies that VSAM obtain storage for the VSAM control blocks and
I/O buffers in an area above 16 megabytes when the ACB is opened.

� STRNO specifies that two requests will require concurrent positioning.

Example: GENCB Macro (Generate an Access Method Control Block)
The access method control block (ACB) generated by this example is built when
the program is executed. In this example, the user provides the storage to contain
the ACB. Because the generate form of the macro is used, the GENCB parameter
list is built in a remote area and passed to VSAM for action.

LA 1ð,LEN1 Get length of the GENCB parameter
list returned by the GENCB macro.

GETMAIN R,LV=(1ð) Get storage for the area in which
the GENCB parameter list is to

 be built.
LR 2,1 Save addr of GENCB parameter-list

 area.
LA 1ð,ACBLNGTH Get length of the ACB.

GETMAIN R,LV=(1ð) Get storage for the area in which
the ACB is to be built.

LR 3,1 Save address of ACB area.

GENCB1 GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM builds x
BUFND=4,BUFNI=3, the ACB in the storage provided x
BUFSP=19456, at the location pointed to by x

 DDNAME=DATASETS, WAREA. x
 LENGTH=ACBLNGTH, x
 MACRF=(KEY,DIR, x
 SEQ,OUT), x
 RMODE31=ALL, x
 WAREA=(3), x
 MF=(G,(2),LEN1)
 .
 .
 .
ANYNAME DSECT KEEP ACB model out of CSECT
ACBSTART ACB AM=VSAM
ACBEND DS ðF
ACBLNGTH EQU ACBEND-ACBSTART

The GENCB macro's parameters are:

� BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for
index entries. BUFSP specifies 19456 bytes of buffer space, enough space to
accommodate control intervals of data that are 4096 bytes and of index entries
that are 1024 bytes.

 Chapter 3. VSAM Macro Descriptions and Examples 45

 GENCB—EXLST

� DDNAME specifies that this access method control block is associated with a
DD statement named DATASETS.

� LENGTH specifies that the length of the storage you provide for the ACB is the
value of ACBLNGTH.

� MACRF specifies keyed direct and keyed sequential processing for both
insertion and update.

� RMODE31 specifies that VSAM obtain storage for the VSAM control blocks and
I/O buffers in an area above 16 megabytes when the ACB is opened.

� WAREA specifies that the address of the storage you provide for the ACB is
held in register 3.

� MF specifies that the GENCB parameter list is to be built in the location
specified by register 2. Also, the expansion of the GENCB macro will equate
LEN1 to the length of the GENCB parameter list.

GENCB—Generate an Exit List at Execution Time
The format of the GENCB macro used to generate an exit list is:

The subparameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

Note: See DFSMS/MVS Using Data Sets for the factors that determine the
addressing mode and the parameter list residency mode set when the exit
routine gets control.

label
specifies 1 to 8 characters that provide a symbolic address for the GENCB
macro.

BLK=EXLST
specifies you are generating an exit list.

AM=VSAM
specifies that the access method using this control block is VSAM.

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,COPIES=abs expression]
[,EODAD=(address[,A |N][,L])]
[,JRNAD=(address[,A |N][,L])]
[,LENGTH=abs expression]
[,LERAD=(address[,A |N][,L])]
[,LOC=BELOW |ANY]
[,SYNAD=(address[,A |N][,L])]
[,RLSWAIT=(address[,A |N][,L])]
[,WAREA= address]

46 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—EXLST

[,EODAD=(address[, A |N][,L])]
[,JRNAD=(address[, A |N][,L])]
[,LERAD=(address[, A |N][,L])]
[,SYNAD=(address[, A |N][,L])]
[,RLSWAIT=(address[, A |N][,L])]

specify you are supplying a routine for the exit named.

For more information about user exit routines, see DFSMS/MVS Using Data
Sets.

If none of these user exit routines is specified, VSAM generates an exit list with
inactive entries for all the exits. The exits and values that can be specified for
them are:

COPIES=abs expression
specifies the number of copies of the exit list you want generated. GENCB
generates as many copies as you specify (default is 1) when your program
is executed. All copies are the same. You can use MODCB to change
some or all of the addresses in a list. MODCB is described in
“MODCB—Modify an Access Method Control Block” on page 66.

EODAD
specifies that an exit is provided for special processing when the end of a
data set is reached by sequential access.

JRNAD
specifies that an exit is provided for journaling as you process data records.
For RLS, JRNAD is not supported and you receive an error if you open the
ACB. This parameter has no effect for HFS files.

LERAD
specifies that an exit is provided for analyzing logical errors.

SYNAD
specifies that an exit is provided for analyzing physical errors.

RLSWAIT
specifies that an exit is provided for wait processing. For RLS the UPAD
exit is ignored if it is specified, and the RLSWAIT exit is used to perform a
similar function.

address
specifies the address of a user-supplied exit routine. The address must
immediately follow the equal sign.

A|N
specifies that the exit routine is active (A) or not active (N). VSAM does not
enter a routine whose exit is marked not active.

L specifies the address is an 8-byte field containing the name of an exit
routine in a partitioned data set identified by a JOBLIB or STEPLIB DD
statement or in SYS1.LINKLIB. VSAM is to load the exit routine for exit
processing. If L is omitted, the address gives the entry point of the exit
routine in virtual storage, and the exit routine is entered in the addressing
mode of the VSAM caller.

L may precede or follow the A or N specification.

 Chapter 3. VSAM Macro Descriptions and Examples 47

 GENCB—EXLST

LENGTH=abs expression
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the exit lists. (See the WAREA parameter.) The LENGTH
value cannot exceed 65535 (X'FFFF').

LOC=BELOW |ANY

BELOW
specifies VSAM is to construct an exit list in an area below 16 megabytes
at execution time.

ANY
specifies VSAM is to construct an exit list in an area above 16 megabytes,
if possible, at execution time.

WAREA=address
specifies the address of an area in which to generate the exit lists.

Note: If you did not specify an area in which the exit list is to be generated,
VSAM obtains virtual storage space for the area (as specified by the
LOC=keyword). Subpool 0 will be requested under the user's key and
state. Users executing in key 0 and supervisor state will actually be
assigned subpool 252. VSAM returns the address of the area in which
the exit lists is to be generated in register 1, and the length of the area
in register 0. You can find the length of each exit list by dividing the
length of the area by the number of copies. The address of each exit
list can then be calculated by this offset from the address in register 1.
You can find the length of an exit list with the SHOWCB macro,
described under

 “SHOWCB—Display Fields of an Exit List” on page 107.

If you are generating control blocks by issuing several GENCBs, specifying an
area (WAREA and LENGTH) for them allows you to address all of them with
one base register and to avoid repetitive requests for virtual storage.

Example: GENCB Macro (Generate an Exit List)
In this example, a GENCB macro is used to generate an exit list when the program
is executed.

EXITS GENCB BLK=EXLST, x
 EODAD=(EOD,N), x
 LERAD=LOGICAL, x
 SYNAD=(ERROR, x
 A,L)

 LTR 15,15
 BNZ ERROR

ST 1,EXLSTADR Address of the exit list is saved.
EOD EQU \ EODAD routine.
LOGICAL EQU \ LERAD routine.
ERROR DC C'PHYSICAL' Name of the SYNAD module.
EXLSTADR DS A Save area for exit-list address.

The GENCB macro's parameters are:

� BLK specifies an exit list is generated.

� EODAD specifies the end-of-data routine is located at EOD and is not active.

48 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—RPL

� LERAD specifies that the logical error routine is located at LOGICAL. Because
neither A nor N is specified, the LERAD routine is marked active by default.

� SYNAD specifies that the physical error routine's name is located at ERROR.

Because no area is specified in which the exit list is to be generated, VSAM obtains
virtual storage for the exit list and returns the address in register 1. Immediately
after the GENCB macro, the address of the exit list, contained in register 1, is
moved to EXLSTADR. EXLSTADR may be specified in a GENCB macro that
generates an access method control block or in a MODCB, SHOWCB, or TESTCB
macro that modifies, displays, or tests fields in an exit list.

GENCB—Generate a Request Parameter List at Execution Time
The format of the GENCB macro used to generate a request parameter list is:

The subparameters of the GENCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

The parameters of the GENCB macro to generate a request parameter list are
optional sometimes, but required in others. It is not necessary to omit parameters
that are not required for a request; they are ignored. Thus, if you switch from direct

[label] GENCB BLK=RPL
[,ACB= address]
[,AM=VSAM]
[,AREA= address]
[,AREALEN= abs expression]
[,ARG=address]
[,COPIES=abs expression]
[,TIMEOUT=number]
[,ECB=address]
[,KEYLEN= abs expression]
[,LENGTH=abs expression]
[,LOC=BELOW |ANY]
[,MSGAREA= address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV |KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE]]
 [,NRI|CR]]
 [,RBA |XRBA])]
[,RECLEN=abs expression]
[,TRANSID=abs expression]
[,WAREA= address]

 Chapter 3. VSAM Macro Descriptions and Examples 49

 GENCB—RPL

to sequential retrieval with a request parameter list, you do not have to zero out the
address of the field containing the search argument (ARG=address).

label
specifies 1 to 8 characters that provide a symbolic address for the GENCB
macro. For addressing lists generated by GENCB, see the COPIES parameter.

BLK=RPL
specifies you are generating a request parameter list.

ACB=address
specifies the address of the access method control block that identifies the data
set to which access will be requested. If you omit this parameter, you must
issue MODCB to specify the address of the access method control block before
you issue a request. MODCB is described in “MODCB—Modify an Access
Method Control Block” on page 66.

AM=VSAM
specifies that the access method using this control block is VSAM.

AREA=address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter OPTCD=MVE). If you
request that records be processed in the I/O buffer (OPTCD=LOC), VSAM puts
into this work area the address of a data record within the I/O buffer.

AREALEN= abs expression
specifies the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD=MVE is the size of a data record
(or the largest data record, for a data set with records of variable length). For
OPTCD=LOC, the area should be 4 bytes to contain the address of a data
record within the I/O buffer.

ARG=address
specifies the address of a field containing the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a fixed-length or
variable-length RRDS, the ARG field must be 4 bytes long. For direct or
skip-sequential processing, this field contains your search argument, a relative
record number. For sequential processing (OPTCD=(KEY,SEQ)), the 4 bytes
are required for VSAM to return the feedback RRN. For keyed access
(OPTCD=KEY), the search argument is a full or generic key. For addressed
access (OPTCD=ADR), the search argument is an RBA. If you specify a
generic key (OPTCD=GEN), you must also specify in the KEYLEN parameter
how many of the bytes of the full key you are using for the generic key.

COPIES=abs expression
specifies the number of copies of the request parameter list to generate.
GENCB generates as many copies as you specify (default is 1) when your
program is executed.

The copies of a request parameter list can be used to:

� Chain lists together to gain access to many records with one request

� Define many requests to gain access to many parts of a data set
concurrently.

50 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—RPL

All copies generated are identical; you must use MODCB to tailor them to
specific requests. MODCB is described in “MODCB—Modify an Access Method
Control Block” on page 66.

ECB=address
specifies the address of an event control block (ECB) that you may supply.
VSAM indicates in the ECB whether a request is complete or not (using
standard completion codes, which are described in OS/390 MVS System
Codes). You can use the ECB to determine that an asynchronous request is
complete before issuing a CHECK macro. This parameter is always optional.

KEYLEN=abs expression
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are using
for a search argument (given in the field addressed by the ARG parameter).
This parameter is required with a search argument that is a generic key. The
number can be 1 through 255. For full-key searches, VSAM knows the key
length, which is taken from the catalog definition of the data set when you open
the data set. This parameter has no effect for HFS files.

TIMEOUT=number
For RLS only, specifies the time in seconds that your program is willing to wait
to obtain a lock on a VSAM record when a lock on the record is already held
by another program.

A non-zero value for TIMEOUT (or if TIMEOUT is not specified) specifies the
time (in seconds) this program waits for the other program(s) to release the
lock.

A value of zero specifies TIMEOUT processing is NOT to be performed by
VSAM for this request. That is, if the record lock required by the request is held
by another program, the program waits until the other program releases the
lock regardless of how long that might be.

LENGTH=abs expression
specifies the length, in bytes, of the area, if any, that you are supplying for
VSAM to generate the request parameter lists. (See the WAREA parameter.)
The LENGTH value cannot exceed 65535 (X'FFFF').

You can find out how long a request parameter list is with the SHOWCB macro,
described in “SHOWCB—Display Fields of a Request Parameter List” on
page 109.

LOC=BELOW |ANY

BELOW
specifies that storage for the RPL be obtained from virtual storage below 16
megabytes.

ANY
specifies that storage be obtained from virtual storage above 16 megabytes
if possible.

MSGAREA=address
specifies the address of an area you are supplying for VSAM to send you a
message if a physical error occurs. The format of a physical error message is
given under “Reason Code (Physical Errors)” on page 149 in the chapter
Chapter 4, VSAM Macro Return and Reason Codes.

 Chapter 3. VSAM Macro Descriptions and Examples 51

 GENCB—RPL

MSGLEN=abs expression
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. The size of a message is 128 bytes. If you provide less than 128
bytes, no message is returned to your program. This parameter is required
when MSGAREA is coded.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the only or last list in the chain. When
you issue a request defined by a chain of request parameter lists, indicate in
the request macro the address of the first parameter list in the chain. A single
request macro can be defined by multiple request parameter lists. For example,
a GET can cause VSAM to retrieve two or more records. This parameter has
no effect for HFS files, and if it is specified with a non-zero value, results in an
error on a subsequent GET, PUT, or POINT.

OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE])
 [,CR|NRI]
 [,RBA |XRBA])

specifies the subparameters that govern the request defined by the request
parameter list. Each group of subparameters has a default; subparameters are
shown in Figure 3 on page 87 with defaults underlined. Only one
subparameter from each group is effective for a request. Some requests do not
require an subparameter from all of the groups to be specified. The groups that
are not required are ignored. Thus, you can use the same request parameter
list for a combination of requests (GET, PUT, POINT, for example) without
zeroing out the inapplicable subparameters each time you go from one request
to another.

RECLEN=abs expression
specifies the length, in bytes, of a data record being stored. If the records you
are storing are all the same length, you do not need to change RECLEN after
you set it. This parameter is required for PUT requests. For GET requests,
VSAM puts the length of the record retrieved in this field in the request
parameter list. It will be there if you update and store the record.

TRANSID=abs expression
specifies a number that relates modified buffers in a buffer pool. Use in shared
resource applications and a description are in DFSMS/MVS Using Data Sets .
This parameter has no effect for HFS files.

WAREA=address
specifies the address of an area in which the request parameter lists are
generated.

Note: If you did not specify an area in which the request parameter list is to
be generated, VSAM obtains virtual storage space for the area (as
specified by the LOC=keyword). Subpool 0 will be requested under the

52 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—RPL

user's key and state. Users executing in key 0 and supervisor state will
actually be assigned subpool 252. VSAM returns the address of the
area in which the request parameter lists are generated in register 1,
and the length of the area in register 0. You can find the length of each
list by dividing the length of the area by the number of copies. You can
then calculate the address of each list by using the length of each list
as an offset.

If you are generating control blocks by issuing several GENCBs, specifying an
area (WAREA and LENGTH parameters) for them allows you to address all of
them with one base register and to avoid repetitive requests for virtual storage.

Building a Chain of Request Parameter Lists
When GENCB is used to build a chain of request parameter lists, the request
parameter lists may be chained using only GENCB macros or using GENCB and
MODCB macros together. When only GENCB is used, the request parameter lists
are created in reverse order, as follows:

SECOND GENCB BLK=RPL
 LR 2,1
FIRST GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its
address available for the first request parameter list. The address of the request
parameter list is returned in register 1 and is loaded into register 2. FIRST GENCB
creates the first request parameter list and supplies the address of the next request
parameter list using register notation. GENCB and MODCB macros may be used
together to create a chain of request parameter lists, as follows:

 GENCB BLK=RPL,COPIES=2
 LR 2,ð
 SRL 2,1
 LR 3,1
 LA 4,ð(2,3)
 MODCB RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the
parameter lists is returned in register 0 and loaded into register 2. The address of
the area in which the lists were created (and, therefore, the address of the first one)
is returned in register 1 and loaded into register 3. The SRL statement divides the
total length of the area (register 2) by 2. The LA statement loads the address of
the second request parameter list into register 4. The MODCB macro modifies the
first request parameter list (register 3) by supplying the address of the second
request parameter list (register 4) in the NXTRPL parameter.

Each request parameter list in a chain should have the same OPTCD
subparameters. Having different subparameters may cause logical errors. You
cannot chain request parameter lists for updating or deleting records—only for
retrieving records or storing new records. You cannot process records in the I/O
buffer with chained request parameter lists. (OPTCD=UPD and LOC are invalid for
chained request parameter lists.)

 Chapter 3. VSAM Macro Descriptions and Examples 53

 GENCB—RPL

Example: GENCB Macro (Generate a Request Parameter List)
In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL, x
 ACB=ACCESS, x
 AM=VSAM, x
 AREA=WORK, x
 AREALEN=125, x
 ARG=SEARCH, x
 LOC=ANY, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x
 OPTCD=(SKP,UPD)

ACCESS ACB MACRF=(SKP,OUT)
WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128

The GENCB macro’s parameters are:

� BLK specifies a request parameter list is generated.

� ACB specifies that the request parameter list is associated with a data set and
processing options identified by ACCESS.

� AREA and AREALEN specify a 125-byte work area used for processing
records.

� ARG specifies the address of the search argument.

� LOC specifies that VSAM obtain storage for the request parameter list in an
area above 16 megabytes.

� MSGAREA and MSGLEN specify a 128-byte area used for physical-error
messages.

� OPTCD specifies the subparameters that govern the request defined by the
request parameter list identified by SKP and UPD.

Example: GENCB Macro (Generate a Request Parameter List)
In this example, a GENCB macro is used to generate a request parameter list
(RPL). In this example the user provides the storage to contain the RPL. Because
the generate form of the macro is used, the GENCB parameter list is built in a
remote area and passed to VSAM for action.

LA 1ð,LEN2 Get length of the GENCB parameter
list returned by the GENCB macro.

GETMAIN R,LV=(1ð) Get storage for the area in which
the GENCB parameter list is to

 be built.
LR 2,1 Save addr of GENCB parameter-list

 area.
GENCB1 GENCB BLK=RPL, One copy generated; VSAM builds x

ACB=ACCESS, the RPL in the storage provided x
AM=VSAM, at the location pointed to by x

 AREA=WORK, WAREA. x
 AREALEN=125, x
 ARG=SEARCH, x
 LENGTH=RPLLNGTH, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x
 OPTCD=(SKP,UPD), x

54 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GENCB—RPL

 WAREA=MYRPL, x
 MF=(G,(2),LEN2)
 .
 .
 .
ACCESS ACB MACRF=(SKP,OUT)
WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128
 DS ðF
MYRPL DS CL(RPLLNGTH) Storage in which the RPL is to be
 built.
ANYNAME DSECT Avoid generation in CSECT
RPLSTART RPL AM=VSAM
RPLEND DS ðF
RPLLNGTH EQU RPLEND-RPLSTART

The GENCB macro's parameters are:

� BLK specifies a request parameter list is generated.

� ACB specifies that the request parameter list is associated with a data set and
processing options identified by ACCESS.

� AREA and AREALEN specify a 125-byte work area used for processing
records.

� ARG specifies the address of the search argument.

� LENGTH specifies that the length of the storage you provide for the RPL is the
value of RPLLNGTH.

� MSGAREA and MSGLEN specify a 128-byte area used for physical-error
messages.

� OPTCD specifies the subparameters that govern the request defined by the
request parameter list identified by SKP and UPD.

� WAREA specifies that the storage you provide for the RPL begins at label
MYRPL.

� MF specifies that the GENCB parameter list is to be built in the location
specified by register 2. Also, the expansion of the GENCB macro will equate
LEN2 to the length of the GENCB parameter list.

 GENCB—List Form
The format of the list form of GENCB is:

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword={address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW |ANY}]
[,RMODE31={ALL|BUFF|CB|NONE }]
,MF={L|(L, address[,label])}
[,WAREA= address]

 Chapter 3. VSAM Macro Descriptions and Examples 55

 GET

 GENCB—Execute Form
The format of the execute form of GENCB is:

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword={address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW |ANY}]
[,RMODE31={ALL|BUFF|CB|NONE }]
,MF=(E,address)
[,WAREA= address]

 GENCB—Generate Form
The format of the generate form of GENCB is:

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword=address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW |ANY}]
[,RMODE31={ALL|BUFF|CB|NONE }]
,MF=(G,address[,label])
[,WAREA= address]

GET—Retrieve a Record
Use the GET macro to retrieve a record.

The format of the GET macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the GET macro.

RPL=address
specifies the address of the request parameter list that defines this GET
request. You may specify the address in register notation (using a register from
1 through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

[label] GET RPL=address

Example 1: Keyed-Sequential Retrieval—Forward (KSDS, RRDS)
In this example, a GET macro is used to sequentially retrieve records by key.
Retrieval is in a forward direction. Fixed-length, 100-byte records are moved to a
work area. Processing is synchronous.

56 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

INPUT ACB MACRF=(KEY, All MACRF and OPTCD subparameters x
SEQ.IN) specified are defaults and could have x

 been omitted.

RETRVE RPL ACB=INPUT, x
 AREA=IN, x
 AREALEN=1ðð, x
 . OPTCD=(KEY,SEQ, x
 . SYN,NUP,MVE)
 .
LOOP GET RPL=RETRVE This GET or identical GETs can be issued, x

with no change in the RPL, to retrieve x
subsequent records in key sequence.

 LTR 15,15
 BNZ ERROR
 .
 B LOOP
ERROR ... Request was not accepted, or failed.
 .
IN DS CL1ðð IN contains a data record after GET is x
 completed.

The records are retrieved in key sequence in a forward direction. No search
argument has to be specified; VSAM is positioned at the first record in key
sequence when the data set is opened, and the next record is retrieved
automatically as each GET is issued. The branch to ERROR can be taken if the
end of the data set is reached.

If the data set is a variable-length RRDS, supply the record length in the RECLEN
field in the RPL.

Example 2: Keyed-Sequential Retrieval—Backward (KSDS, RRDS)
This example differs from the previous one in that a POINT macro is issued to the
last record in the data set and the records are retrieved in a backward direction.

INPUT ACB DDNAME=INPUT, x
 EXLST=EXLST1

RETRVE RPL ACB=INPUT, Define RPL for last record positioning x
AREA=IN, and backward processing. x

 AREALEN=1ðð, x
 OPTCD=(KEY,SEQ, x
 LRD,BWD)

EXLST1 EXLST EODAD=EOD Define end of data.

POINT RPL=RETRVE Position to last record (no argument
 is required).
 LTR 15,15
 BNZ ERROR
LOOP GET RPL=RETRVE Get previous record.
 LTR 15,15
 BNZ ERROR
 .
 B LOOP
EOD EQU \ Come here for end of data.
ERROR ... Request failed.
 .
IN DS CL1ðð Area for retrieved record.

 Chapter 3. VSAM Macro Descriptions and Examples 57

 GET

Example 3: Skip-Sequential Retrieval (KSDS, Variable-length RRDS)
In this example, a GET macro is used to retrieve variable-length records
synchronously. Records are processed in the I/O buffer. The search argument is
full key, compared greater-than-or-equal; key length is 8 bytes.

The records are retrieved in key sequence, but some records are skipped.
Skip-sequential retrieval is similar to keyed-direct retrieval, except that you must
retrieve records in ascending sequence (with skips) rather than in a random
sequence.

If the data set is a variable-length RRDS, specify the relative record number in the
ARG field, and the record length in the RECLEN field in the RPL.

GENCB BLK=ACB, VSAM gets an area in virtual storage x
DDNAME=INPUT, to generate the access method control x
MACRF=(KEY, block and returns the address in x

 SKP,IN) register 1.

 LTR 15,15
 BNZ CHECKð
 LR 2,1
 GENCB BLK=RPL, x

 ACB=(2), x
 AREA=RCDADDR, x
 AREALEN=4, x
 ARG=SRCHKEY, x
 OPTCD=(KEY,SKP, x
 SYN,NUP,KGE, x
 FKS,LOC)
 LTR 15,15
 BNZ CHECKð

LR 3,1 Address of the request parameter list.
 .
LOOP MVC SRCHKEY,source Search argument for retrieval, moved in

from a table or a transaction record.
 GET RPL=(3)
 LTR 15,15
 BNZ ERROR

SHOWCB AREA=RCDLEN, Display the length of the record. x
 FIELDS=RECLEN, x
 LENGTH=4, x
 RPL=(3)

 LTR 15,15
 BNZ CHECKð
 .
 B LOOP
ERROR ... Request was not accepted, or failed.
CHECKð ... Generation or display failed.
 .
RCDADDR DS F Work area into which VSAM puts the x

address of a data record within the x
within the I/O buffer (OPTCD=LOC).

SRCHKEY DS CL8 Search argument for retrieval.

RCDLEN DS F For displaying variable record lengths.

The macros and instructions are as follows:

58 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

� The first GENCB generates an access method control block, which specifies
keyed, skip-sequential, and input processing. The address of the access
method control block is stored in register 2.

� The second GENCB generates a request parameter list. The address of the
request parameter list is stored in register 3.

� MVC moves the search argument into SRCHKEY, the area defined for the
search argument.

� GET specifies that the record pointed at by the request parameter list whose
address is in register 3 is to be retrieved. Records are retrieved by a
skip-sequential search through the sequence set of the index.

Example 4: Addressed-Sequential Retrieval (ESDS)
In this example, one GET macro is used to retrieve multiple fixed-length, 20-byte
records. The records are moved to a work area (only option).

BLOCK ACB DDNAME=INPUT, x
 . MACRF=(ADR,SEQ, x
 . IN)
 .
 GENCB BLK=RPL, x
 COPIES=1ð, x
 ACB=BLOCK, x
 OPTCD=(ADR,SEQ, x
 SYN,NUP,MVE)

 LTR 15,15
 BNZ CHECKð

LA 3,1ð Number of lists(1ð).
LR 2,1 Address of the first list.

LR 1,ð Length of all of the lists. Registers ð x
and 1 contain length and address of the x
generated control blocks when VSAM x
returns control after GENCB.

SR ð,ð Prepare for following division.

DR ð,3 Divide number of lists into length of x
all the lists.

LR 3,1 Save the resulting length of a single x
list for an offset.

LR 4,2 Save address of the first list.

LA 5,RECAREA Address of the first work area. Do the x
. following 6 instructions 1ð times to set x
. up all the request parameters lists. The x

1ðth time, register 4 must be set to ð x
to indicate the last request parameter x
list in the chain.

AR 4,3 Address the next list.

MODCB RPL=(2), In each request parameter list, indicate x
NXTRPL=(4), the address of the next list and the x
AREA=(5), address and length of the work area. x

 AREALEN=2ð

 Chapter 3. VSAM Macro Descriptions and Examples 59

 GET

 LTR 15,15
 BNZ CHECKð

AR 2,3 Address the next list.
LA 5,2ð(5) Address the next work area. Restore x
. register 2 to address the first list x
. before continuing to process.

LOOP GET RPL=(2)
 LTR 15,15

BNZ ERROR Process the 1ð records that have been x
. retrieved by the GET.

 .
 B LOOP
CHECKð ...
ERROR ... Display the feedback field (FIELDS=FDBK) x

of each request parameter list to find x
out which one had an error.

RECAREA DS CL2ðð Space for a work area for each of the x
1ð request parameter lists.

The GENCB macro generates 10 request parameter lists; the lists are subsequently
chained together by using the MODCB macro to modify the NXTRPL parameter in
each copy. Because SEQ is specified in each request parameter list, and no
previous request has been issued against the access method control block since it
was opened, retrieval begins at the beginning of the data set. Each time the GET
macro is executed, VSAM is positioned at the next record in RBA sequence. VSAM
moves each record into the work area provided for the request parameter list that
identifies the record.

If an error occurs for one of the request parameter lists in the chain and you supply
error-analysis routines, VSAM takes a LERAD or SYNAD exit before returning to
your program. Register 15 is set to indicate the status of the request. A code of 0
indicates that no error was associated with any of the request parameter lists. Any
other code indicates that an error occurred for one of the request parameter lists.
You should issue a SHOWCB macro for each request parameter list in the chain to
find out which had an error. VSAM does not process any of the request parameter
lists except the one with an error.

Example 5: Sequential Retrieval for a Fixed-Length RRDS
In this example, a GET macro is used to sequentially retrieve records by relative
record number. Fixed-length, 100-byte records are moved to a work area.
Processing is synchronous.

INPUT ACB MACRF=(KEY,SEQ) All MACRF and OPTCD subparameters x
are defaults and could be omitted.

RETRVE RPL ACB=INPUT, x
 AREA=IN, x
 AREALEN=1ðð, x
 ARG=RCDNO, x
 OPTCD=(KEY,SEQ, x
 SNY,NUP,MVE)

60 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

 .
LOOP GET RPL=RETRVE This GET or identical GETs can be x

issued, with no change in the RPL, to x
retrieve subsequent records in x
relative record number sequence.

 LTR 15,15
 BNZ ERROR
 .
 B LOOP
ERROR ... Request was not accepted or it failed.
 .
IN DS CL1ðð IN contains a data record after GET is x
 completed.
RCDNO DS CL4 VSAM returns relative record number of x

retrieved record in this field.

The records are retrieved in relative record number sequence. Empty records are
bypassed for sequential retrieval. A 4-byte search argument must be specified. The
relative record number of each record retrieved is stored in the search argument.
VSAM is positioned at the first relative record when the data set is opened, and the
next not empty record is retrieved automatically as each GET is issued. The branch
to ERROR is taken when the end of the data set is reached.

Example 6: Keyed-Direct Retrieval (KSDS, RRDS)
In this example, a GET macro is used to retrieve fixed-length, 100-byte records
directly by key. The key length is 15 bytes; the search argument is a 5-byte generic
key, compared equal. The control blocks are generated at assembly.

INPUT ACB MACRF=(KEY, x
 DIR,IN)

RETRVE RPL ACB=INPUT, Specify all parameters for the request x
AREA=IN, in the RPL macro. x

 AREALEN=4, x
 OPTCD=(KEY, x
 DIR,SYN,NUP, x
 KEQ,GEN,LOC), x
 ARG=KEYAREA, x
 . KEYLEN=5
 .
LOOP MVC KEYAREA,SOURCE Search argument for retrieval, moved x

in from a table or a transaction x
 record.

GET RPL=RETRVE This GET or identical GETs can be x
issued with no change in the RPL: x
specify each new search argument in x
the field KEYAREA.

 LTR 15,15
 BNZ ERROR

. Process the record.
 .
 B LOOP
ERROR ... Request was not accepted, or failed.
 .
IN DS CL4 VSAM puts here the address of the x

record within the I/O buffer.
KEYAREA DS CL5 You specify the search argument here.

The generic key specifies a class of records. For example, if you search on the first
third of employee number, VSAM positions at and retrieves the first of several

 Chapter 3. VSAM Macro Descriptions and Examples 61

 GET

records starting with the specified characters. To retrieve all the records in that
class, either switch to sequential access or to a full-key search with a
greater-than-or-equal comparison.

The search argument can be a key or relative record number. If the data set is a
variable-length RRDS, supply the record length in the RECLEN field in the RPL.

Example 7: Addressed-Direct Retrieval (ESDS, KSDS)
In this example, a GET macro is used to retrieve fixed-length 20-byte records. The
records are to be moved to a work area.

BLOCK ACB DDNAME=INPUT, Access method control x
. MACRF=(ADR, DIR, block generated at assembly. x

 . IN)
 .

GENCB BLK=RPL, Request parameter list generated x
 ARG=SRCHADR, at execution. x
 AREA=IN, x
 AREALEN=2ð, x
 COPIES=1, x
 ACB=BLOCK, x
 OPTCD=(ADR, DIR, x

SYN, NUP, MVE)

 LTR 15,15
 BNZ CHECKð

LR 2, 1 Address of the list.
 .
LOOP MVC SRCHADR, Search argument for retrieval; x

calculated or moved in from a table x
or a transaction record.

 GET RPL=(2)
 LTR 15, 15
 BNZ ERROR

. Process the record.
 .

 B LOOP
CHECKð ... Generation failed.
ERROR ... Request was not accepted, or failed.
 .
IN DS CL2ð VSAM puts a record here for each x
 GET request.
SRCHADR DS CL4 You specify the RBA search argument x

here for each request.

The RBA provided for a search argument must match the RBA of a record. Keyed
insertion and deletion of records in a key-sequenced data set will probably cause
the RBAs of some records to change. Therefore, if you process a key-sequenced
data set by addressed-direct access (or by addressed-sequential access using
POINT), you need to keep track of changes. You can use the JRNAD exit for this
purpose. See “EXLST—Generate an Exit List at Assembly Time” on page 37.

Example 8: Switch from Direct to Sequential Retrieval
In this example, GET macros are used to retrieve fixed-length, 100-byte records.
The retrieval is by means of an alternate index path defined with the non-unique
key option. Every time a non-unique key is retrieved, the program switches to
sequential processing to retrieve the other records with the same key. The control
blocks were generated at assembly, but the MODCB macro is used to modify the

62 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

request parameter list to permit switching from keyed-direct to keyed-sequential
retrieval. For the direct request preceding sequential requests, the search argument
is an 8-byte, generic key, compared equal. Positioning is requested for direct
requests.

INPUT ACB MACRF=(KEY,DIR, Both direct and sequential access x
 SEQ,IN) specified.

RETRVE RPL ACB=INPUT, NSP specifies that VSAM is to x
AREA=IN, remember its position. x

 AREALEN=1ðð, x
 OPTCD=(KEY,DIR, x
 SYN,NSP,KEQ, x
 GEN,MVE), x
 ARG=KEYAREA, x
 . KEYLEN=8
 .
LOOP MVC KEYAREA,source Search argument for direct retrieval; x

moved in from a table or a x
 transaction.
LOOP1 GET RPL=RETRVE
 LTR 15,15
 BNZ ERROR
 .

SHOWCB RPL=RETRVE, Extract feedback information. x
 AREA=FDBAREA, x
 FIELDS=FDBK
 LTR 15,15
 BNZ ERROR

CLI ERRCD,8 Does a duplicate key follow?

BE SEQ Yes; retrieve duplicates x
 sequentially.

B LOOP No; retrieve next record in direct x
 mode.
SEQ MODCB RPL=RETRVE, Alter request parameter list for x
 OPTCD=SEQ sequential access.
 LTR 15,15
 BNZ CHECKO
SEQGET GET RPL=RETRVE Do sequential retrieval.

LTR 15,15 Test for error.
 BNZ ERROR
 .

SHOWCB RPL=RETRVE, Extract feedback information. x
 AREA=FDBAREA, x
 FIELDS=FDBK
 LTR 15,15
 BNZ ERROR

CLI ERRCD,8 Does a duplicate key follow?
BE SEQGET Yes; retrieve sequentially.

 Chapter 3. VSAM Macro Descriptions and Examples 63

 IDALKADD

DIR MODCB RPL=RETRVE, Alter request parameter list for x
 OPTCD=DIR direct access.
 LTR 15,15
 BNZ CHECKO

B LOOP Prepare new search argument.
ERROR ... Request was not accepted, or failed.
CHECKO ... Modification failed.
 .
IN DS CL1ðð VSAM puts retrieved records here.

KEYAREA DS CL8 Specify the generic key for a direct x
 request here.
FDBAREA DS OF Feedback area for SHOWCB.
 DS 1C Reserved.
TYPECD DS 1C Error type code.
CMPCD DS 1C Component code.
ERRCD DS 1C Reason code.

Positioning is associated with a request parameter list; the MODCB macro modifies
a single request parameter list that alternately defines requests for both types of
access rather than using a different request parameter list for each type.

With direct retrieval, VSAM does not remember its position for subsequent
sequential retrieval unless you explicitly request it (OPTCD=NSP or UPD). After a
direct GET for update, VSAM is positioned for a subsequent PUT, ERASE, or
sequential GET. If you modify OPTCD=(DIR,NUP) to OPTCD=SEQ, you must issue
POINT to get VSAM positioned for sequential retrieval, as NUP indicates that no
positioning is desired with a direct GET.

If you have chained many request parameter lists together, one position is
remembered for the whole chain. For example, if you issue a GET that gives the
address of the first request parameter list in the chain, the position of VSAM when
the GET request is complete is at the record following the record defined by the
last request parameter list in the chain. Therefore, modifying OPTCD=(DIR,NSP) in
each request parameter list in a chain to OPTCD=SEQ implies continuing with
sequential access relative to the last of the direct request parameter lists.

IDALKADD—RLS Record Locking
The IDALKADD macro is an RLS only VSAM request macro. It is used by
applications or application support packages such as CICS File Control that
perform logging of changes to VSAM data sets. With logging, it is necessary to
create a log entry before making the corresponding change to the data set or
database. The log entry must uniquely identify the inserted, deleted, or changed
record. Logging an ADD to a KSDS in the case where VSAM rejects the ADD due
to a duplicate key condition presents a problem. Also, the record identification for
an ESDS is the record RBA and logging an ADD to an ESDS implies the RBA of
the record is known before actually ADDing the record. This IDALKADD request
addresses these two situations.

IDALKADD to a KSDS, RRDS, VRRDS, via the base or a path performs duplicate
key/RRN checking. If a record with the specified key/RRN already exists in the
base, the IDALKADD fails with the duplicate key/RRN error status. If the base data
set does not contain a record with the specified key/RRN, IDALKADD obtains a
record lock to ensure no other

64 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 IDALKADD

The PUT request must use the same RPL as was used by the IDALKADD. The
IDALKADD and PUT NUP are a request pair in the same sense as GET UPD and
PUT UPD are a request pair. Reuse of the RPL before issuing the PUT NUP
cancels the IDALKADD. The length of the record specified on IDALKADD and the
subsequent PUT must be the same or the PUT request is rejected with an invalid
record length reason code. For a KSDS, RRDS, or VRRDs, the PUT must specify a
record with the same base key/RRN as was specified by the IDALKADD request.

Even though an IDALKADD is successful, the corresponding PUT NUP may fail.
An example of where the PUT NUP would fail is the condition where the PUT NUP
would create a duplicate key in an alternate index and the alternate index requires
unique keys. In this case, the PUT NUP fails.

IDALKADD is supported for both base and path access. IDALKADD is supported
for both recoverable spheres and non-recoverable spheres. It is supported for
KSDSs, ESDSs, RRDSs, and VRRDSs.

The record lock acquired by an IDALKADD request is released as follows:

 � Recoverable Sphere

Only CICS transactions are allowed to add records to a recoverable sphere.
The record lock is released at the end of the CICS transaction.

 � Non-Recoverable Sphere

The following events release the record lock.

– The paired PUT NUP is issued and the data CI containing the new record
has been written to DASD and the CF.

– An ENDREQ is issued on the string.

– The string (RPL) is re-used without issuing the paired PUT NUP.

– The CICS transaction reaches end-of-transaction.

VSAM does not support PUT NUP,SEQ in backward processing mode. This also
means IDALKADD SEQ,BWD is not supported.

The format of the IDALKADD macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the IDALKADD
macro.

RPL=address
specifies the address of the request parameter list that defines this IDALKADD
request. You may specify the address in register notation (using a register from
1 through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

The following RPL parameters apply to this request:

AREA
Contains a copy of the record that will be added to the data set by a PUT NUP
request

[label] IDALKADD RPL=address

 Chapter 3. VSAM Macro Descriptions and Examples 65

 MODCB—ACB

For IDALKADD to a KSDS, a record lock is obtained on the specified record.
The record lock name is derived from the base key of the record. The base key
is extracted from this copy of the record.

AREALEN
Length of the record. The subsequent PUT must specify the same length.

ARG
For an IDALKADD DIR/SKP to a RRDS or an IDALKADD DIR/SKP/SEQ
request to a VRRDS, the application provides the RRN of the new record here.

MODCB—Modify an Access Method Control Block
The format of the MODCB macro used to modify an access method control block
is:

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the MODCB
macro.

[label] MODCB ACB=address
[BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,DDNAME=character string]
[,EXLST=address]
[,MACRF=([ADR][,CNV] [,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR]
 [,NUB|UBF])]
[,MAREA= address]
[,MLEN=abs expression]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE }]
[,SHRPOOL=abs expression]
[,STRNO=abs expression]

66 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 MODCB—EXLST

ACB=address
specifies the address of the access method control block to be modified. The
data set identified by the access method control block must not be opened. A
request to modify the access method control block of an open data set will fail.

Note: The remaining parameters represent parameters of the ACB macro that can
be modified. The value specified replaces the value, if any, presently in the
access method control block. There are no defaults. For an explanation of
these parameters, see “ACB—Generate an Access Method Control Block at
Assembly Time” on page 12.

If MODCB is used to modify a MACRF subparameter, other subparameters are
unaffected, except when they are mutually exclusive. For example, if you specify
MACRF=ADR in the MODCB and MACRF=KEY is already indicated in the control
block, both ADR and KEY are now indicated. But, if you specify MACRF=UBF in
the MODCB and NUB is indicated, only UBF will now be indicated.

The RMODE31 parameter tells the VSAM OPEN routines where to obtain storage
for the control blocks and I/O buffers. Therefore, the only time the values specified
by the RMODE31 parameter have any effect on VSAM is on the setting just before
an OPEN is issued. At other times, changing these values has no effect on the
residency of the control blocks and I/O buffers. RMODE31 is ignored for RLS
processing.

If MODCB RPL is used to change the address of an ACB, you must first issue an
ENDREQ macro.

Note: If you issue a MODCB for a non-VSAM and non-VTAM ACB, the results will
be unpredictable.

Example: MODCB Macro (Modify an Access Method Control Block)
In this example, a MODCB macro is used to modify the name of the exit list in an
access method control block.

MODCB ACB=BLOCK, BLOCK was generated at x
 EXLST=EGRESS assembly.

MODCB—Modify an Exit List
The format of the MODCB macro used to modify an exit list is:

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

[label] MODCB EXLST=address
[,EODAD=([address][,A|N][,L])]
[,JRNAD=([address][,A|N][,L])]:
[,LERAD=([address][,A|N][,L])]
[,SYNAD=([address][,A|N][,L])]

 Chapter 3. VSAM Macro Descriptions and Examples 67

 MODCB—RPL

Note: See DFSMS/MVS Using Data Sets for information about what determines
the addressing mode and the parameter list residency mode set when the
exit routine gets control.

label
specifies 1 to 8 characters that provide a symbolic address for the MODCB
macro.

EXLST=address
specifies the address of the exit list to be modified. You can modify an exit list
at any time—that is, before or after opening the data sets for which the list
indicates exit routines. You cannot, however, add an entry to the exit list if it
changes the exit list's length; the exit list must already be large enough to
contain the new exit address. The order in which addresses are stored in the
EXLST control block is: EODAD, SYNAD, LERAD, JRNAD, and UPAD. For
example, if you generate an exit list with only the LERAD exit, you can add
entries for EODAD and SYNAD later. However, you cannot add the JRNAD exit
address, because doing so would increase the size of the EXLST control block.
The MODCB macro does not support the UPAD user exit.

The remaining parameters represent parameters of the EXLST macro that can be
modified or added to an exit list. For an explanation of these parameters, see
“EXLST—Generate an Exit List at Assembly Time” on page 37.

Note: If the JRNAD exit is changed for an OPEN ACB, then the ACB must be
closed and reopened to use the modified JRNAD exit.

For more information about user exit routines, see DFSMS/MVS Using Data Sets .

Example: MODCB Macro (Modify an Exit List)
In this example, a MODCB macro is used to activate an exit in an exit list.

MODCB EXLST=(\, Indirect notation is used to specify x
EXLSTADR), the address of the exit list generated x

 . EODAD=(EOD,L,A) at execution.
 .
EOD DC C'ENDUP'
EXLSTADR DS F When the exit list was generated, x

its address was saved here.

The MODCB macro's parameters are:

� EXLST specifies the address of the exit list being modified is located at
EXLSTADR.

� EODAD specifies the entry for the end-of-data routine is marked active in the
exit list that has an address at EXLSTADR. The name of the end-of-data
routine (ENDUP) is at EOD.

MODCB—Modify a Request Parameter List
The format of a MODCB macro used to modify a request parameter list is:

68 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 MODCB—RPL

The subparameters of the MODCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the MODCB
macro.

RPL=address
specifies the address of the request parameter list being modified. You may not
modify an active request parameter list; one that defines a request that has
been issued but not completed. To modify such a request parameter list, you
must first issue a CHECK or an ENDREQ macro.

Note: The remaining parameters represent parameters of the RPL macro that can
be modified. The value specified replaces the value, if any, presently in the
request parameter list. There are no defaults. For an explanation of these
parameters, see “GENCB—Generate a Request Parameter List at
Execution Time” on page 49.

If MODCB is used to modify an OPTCD subparameter within a group of
subparameters, the current subparameter for that group is changed because only
one subparameter in a group is effective at a time. Only the specified OPTCD
subparameter is changed.

[label] MODCB RPL=address
[,ACB= address]
[,AREA= address]
[,AREALEN= abs expression]
[,ARG=address]
[,ECB=address]
[,KEYLEN= abs expression]
[,MSGAREA= address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE]]
 [,RBA|XRBA])]
[,RECLEN=abs expression]
[,TRANSID=abs expression]

 Chapter 3. VSAM Macro Descriptions and Examples 69

 MODCB—RPL

Example: MODCB Macro (Modify a Request Parameter List)
In this example, a MODCB macro is used to modify the record length field in a
request parameter list.

Note: This example shows the one exception to GENCB, MODCB, SHOWCB, and
TESTCB building a parameter list and passing it to the control block
manipulation module in register 1. The RPL address (in register 2) is loaded
into register 1 and the RECLEN value (in register 3) is loaded into register
0. These registers are passed to the control block manipulation macro. This
occurs when the LIST, EXECUTE, or GENERATE form of the MODCB
macro is not used and the only parameter specified other than RPL, is
RECLEN.

L 3,length Load the new record length.

MODCB RPL=(2), Register 2 contains the address x
of the request parameter list. x

RECLEN=(3) Register 3 contains the record length.

The MODCB macro's parameters are:

� RPL specifies register 2 contains the address of the request parameter list
being modified.

� RECLEN specifies the record length field is being modified. The contents of
register 3 replace the current value in the RECLEN field.

 MODCB—List Form
The format of the list form of MODCB is:

[label] MODCB {ACB|EXLST|RPL}= address
,keyword={address|name|abs expression|option},...
,MF={L|(L, address[,label])}

 MODCB—Execute Form
The format of the execute form of MODCB is:

Note: If the execute form of MODCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB=.

[label] MODCB [{ACB|EXLST|RPL}= address]
,keyword={address|name|abs expression|option},...
,MF=(E,address)

 MODCB—Generate Form
The format of the generate form of MODCB is:

[label] MODCB {ACB|EXLST|RPL}= address
,keyword={address|name|abs expression|option},...
,MF=(G,address[,label])

70 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 MRKBFR

 MRKBFR—Mark Buffer
If you are using local or global shared resources, use the MRKBFR macro to mark
a buffer.

The format of the MRKBFR macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the MRKBFR
macro.

MARK={DINVALID|XINVALID|OUT|RLS}
specifies the buffer identified in the RPL is either marked for output, or is to be
released from either exclusive control or shared status. To do both, issue
MRKBFR twice: once with MARK=OUT, once with MARK=RLS.

DINVALID|XINVALID
specifies that either the data component or the index component buffers
are to be marked invalid. The buffers being invalidated are those that
contain records with RBA values within the RBA range pointed to by the
RPL ARG address. DINVALID specifies that the data component buffers be
marked invalid. XINVALID specifies that the index component buffers be
marked invalid.

OUT
specifies that the buffer be marked for output. The buffer is kept either
under exclusive control or in shared status.

RLS
specifies that the buffer be released either from exclusive control or shared
status.

RPL=address
specifies the address of the request parameter list defining the MRKBFR
request. Use the SCHBFR or GET RPL to locate the buffer being marked or
released. These RPL parameters have meaning for MRKBFR:

ACB=address

ARG=address
The address of the 8-byte field that contains the beginning and ending
RBAs of the range being searched on.

For compressed data sets, the RBA of another record or the address of the
next record in a buffer cannot be determined using the length of the current
record or the length of the record provided to VSAM.

For extended addressing, the address of a 16-byte field containing the
beginning and ending 8-byte RBAs of the range.

ECB=address

[label] MRKBFR MARK={DINVALID|XINVALID|OUT|RLS}
,RPL=address

 Chapter 3. VSAM Macro Descriptions and Examples 71

 OPEN

TRANSID=number

All other RPL parameters are ignored. RPLs are assumed not to be
chained. OPTCD=LOC is assumed.

If the ACB related to the RPL has MACRF=GSR, the program issuing
MRKBFR must be in supervisor state with protection key 0 to 7.

OPEN—Connect Program and Data
Use the OPEN macro to open a data set.

The format of the OPEN macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the OPEN
macro.

address
specifies the address of the ACB or DCB for the data sets being opened. You
may specify the address either in register notation (using a register from 2
through 12, in parentheses) or with an expression that generates a valid
relocatable A-type address constant. If you use register notation to open one
data set, enclose the expression identifying the register within two sets of
parentheses: OPEN ((2)).

options
specifies options parameters used only in opening non-VSAM data sets. VSAM
ignores options specified with the address of an access method control block.

Because the OPEN parameters are positional, if options are not specified, you
must insert a comma before coding a subsequent parameter.

MODE =
specifies the format of the OPEN parameter list being generated.

24 specifies that a standard form (24-bit) parameter list address be generated.
The parameter list must reside below 16 megabytes and point to an ACB
residing below 16 megabytes.

31 specifies that a long form (31-bit) parameter list address be generated.
This parameter value must be coded if the parameter list or the
VSAM/VTAM ACB resides above 16 megabytes.

Note: For non-RLS, if the VSAM control blocks and buffers are to reside above 16
megabytes, the RMODE31 parameter must be specified in the ACB before
the OPEN is issued.

[label] OPEN (address[, [(options)][,...]])
[,MODE={24|31}]

72 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 POINT

Example 1: OPEN Macro Used to Open Two Data Sets
In this example, the access method control block for one data set is generated at
execution; the other is generated at assembly.

GENCB BLK=ACB, An access method control block. x
 DDNAME=DATA
 LTR 15,15

 BNZ ERROR

LR 2,1 Address of the control block.

OPEN (BLOCK,,(2)) A label is used for the access method x
control block generated by ACB; x
register notation is used for the x
one generated by GENCB. The two commas x
indicate the omission of options.

BLOCK ACB , Another access method control block.

Example 2: OPEN Macro With a Parameter List Above 16 Megabytes
In this example, a program is opened with a parameter list that may reside above
16 megabytes.

OPLSTA OPEN MODE=31, x
 MF=(E,OPLSTB)

OPLSTB OPEN (ACB1,,ACB2), x
 MODE=31, x
 MF=L

Since MODE=31 is coded in the list form of the OPEN macro, VSAM ACBs and the
OPEN parameter list may reside above 16 megabytes.

Note: Consistency must be maintained while using the MODE operand in the
MF=L and MF=E versions of the OPEN macro. If MODE=31 is specified in
the MF=L version, then MODE=31 must also be coded in the corresponding
MF=E version of the macro. Unpredictable results may occur if this rule is
not followed.

MF=E and MF=L are not required. OPEN (ACB1),MODE=31 is also valid.

POINT—Position for Access
Use the POINT macro to position a record.

The format of the POINT macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the POINT
macro.

RPL=address
specifies the address of the request parameter list defining the request. You
may specify the address in register notation (using a register from 1 through

[label] POINT RPL=address

 Chapter 3. VSAM Macro Descriptions and Examples 73

 PUT

12, enclosed in parentheses) or specify it with an expression that generates a
valid relocatable A-type address constant.

Example: Position with POINT
In this example, the POINT macro is used to position at a record identified by a full
key (5-byte) search argument, compared equal.

BLOCK ACB DDNAME=IO Default MACRF subparameters sufficient.

POSITION RPL ACB=BLOCK, ARG parameter and KEQ and FKS OPTCD x
AREA=WORK, subparameters define the POINT x

 AREALEN=5ð, request. x
 ARG=SRCHKEY, x
 . OPTCD=(KEY,SEQ,SYN,KEQ,FKS)
 .
LOOP MVC SRCHKEY,source Search argument for positioning, moved x

from a table or transaction record.
 POINT RPL=POSITION
 LTR 15,15
 BNZ ERROR
LOOP1 GET RPL=POSITION
 LTR 15,15
 BNZ ERROR

Process the record. Decide whether to skip to another position (forward or
backward).

 BE LOOP Yes; skip.
B LOOP1 No; continue in consecutive sequence.

ERROR ... Request was not accepted, or failed.
 .
SRCHKEY DS CL5 Search argument for positioning.

WORK DS CL5ð VSAM puts a record here for each GET x
 request.

PUT—Write a Record
Use the PUT macro to write (load) records to an empty data set, and insert or
update records into an existing data set.

The format of the PUT macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the PUT macro.

RPL=address
specifies the address of the request parameter list defining the request. You
may specify the address in register notation (using a register from 1 through
12, enclosed in parentheses) or specify it with an expression that generates a
valid relocatable A-type address constant.

Note: If the PUT macro is used to load records into an empty data set, the
STRNO value in the access method control block must be 1, and RPL
OPTCD=DIR must not be specified. However, for an empty RRDS, DIR is
allowed.

[label] PUT RPL=address

74 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

Example 1: Keyed-Sequential Insertion (KSDS, Variable-Length RRDS)
In this example, a PUT macro is used to perform keyed-sequential insertion in a
key-sequenced data set or variable-length RRDS. Variable-length records with a
key length of 15 bytes are moved from a work area. Some records are inserted
between existing records; other records are added at the end of the data set.

BLOCK ACB DDNAME=OUTPUT, x
 MACRF=(KEY,SEQ,OUT)

LIST RPL ACB=BLOCK, x
 AREA=BUILDRCD, x
 AREALEN=25ð, x
 . OPTCD=(KEY,SEQ, x
 . SYN,NUP,MVE)
 .
LOOP L 2,source Put length of record to be inserted x
 into register.

MODCB RPL=LIST, Indicate record length in request x
 RECLEN=(2) parameter list.

 LTR 15,15
 BNZ CHECKO
 PUT RPL=LIST
 LTR 15,15
 BNZ ERROR
 B LOOP
CHECKO ... Modification failed.
ERROR ... Request was not accepted, or failed.

BUILDRCD DS CL25ð Work area for building records.

The request parameter list, LIST, is associated with the access method control
block, BLOCK. The length of each record to be inserted is put into register 2, which
is subsequently used by MODCB to change the record length in the request
parameter list. The record length is, therefore, correctly indicated in the request
parameter list before the PUT macro is issued. The execution of the PUT macro
causes VSAM to skip ahead (never back) to the next record.

Example 2: Recording RBAs When Loading a KSDS
In this example, a PUT macro is used to record the RBAs of records as they are
loaded into a key-sequenced data set. The RBAs are recorded in a table with
20-byte entries (4 bytes for RBA, 15 bytes for associated key, and 1 byte of
padding so the next entry begins on a fullword boundary).

 Chapter 3. VSAM Macro Descriptions and Examples 75

 PUT

LA 3,RBATBLE Address of the beginning of the table.
 ...
LOOP L 2,source Put length of record to be inserted x

into register 2.

MODCB RPL=LIST, Indicate record length in request x
 RECLEN=(2) parameter list.

 LTR 15,15
 BNZ CHECKO
 PUT RPL=LIST
 LTR 15,15
 BNZ ERROR

SHOWCB AREA=(3), Each SHOWCB puts a record's RBA into x
 FIELDS=RBA, the table. x
 LENGTH=4, x
 RPL=LIST

 LTR 15,15
 BNZ CHECKO

MVC 4(15,3), Put the record's key field in the x
 keyfield table.

LA 3,2ð(3) Point to the next entry.
 B LOOP
ERROR ... Request was not accepted, or failed.

CHECKO ... Modification or display failed.
 .

DSECT Get enough virtual storage for as many x
table entries as there are records in x
the data set.

RBATBLE DS OF
RBA DS CL4
KEY DS CL15

DS CL1 Padding to keep each RBA entry on a x
fullword boundary: SHOWCB's x
display area must be on a fullword x

 boundary.

The need to process a key-sequenced data set by address is unusual, but by
recording the RBA of each record in a key-sequenced data set, you have search
arguments for possible processing of the data set by addressed-direct retrieval and
by addressed-sequential retrieval using the POINT macro. (You do not need to
know RBAs to process a key-sequenced data set by simple addressed-sequential
retrieval, since you go from the beginning without any skips.)

You can display the RBA of a record after you issue a GET or a POINT, as well as
after you issue a PUT.

Example 3: Loading a Fixed-Length RRDS (Skip-Sequential and
Direct Processing)
In this example, a PUT macro is used to store twenty 100-byte records in slots 5,
10, 15,...,100 of the data set. MODCB is used to switch to direct processing, and
PUT is used to store records in slots 26 and 51 of the data set.

76 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

OUTACB ACB MACRF=(SKP,OUT, x
 . DIR,KEY)
 .

GENCB BLK=RPL, Generate a request parameter list x
ACB=OUTACB, at execution time. x

 AREA=WORK, x
 AREALEN=1ðð, x
 ARG=RCDNO, x
 OPTCD=(KEY,SKP)

 LTR 15,15
 BNZ GENFAIL

LR 5,ð Save length of RPL.
LR 6,1 Save address of RPL.
LA 7,5 Initialize increment value.
ST 7,RCDNO Initialize argument to slot 5.
LA 1ð,2ð Initialize loop counter.

LOOP ... Move new record into work.
 PUT RPL=(6) Store record.
 LTR 15,15

BNZ PUTERR Request was not accepted, or failed.
 L 1,RCDNO
 AR 1,7

ST 1,RCDNO Increment argument by 5.
 BCT 1ð,LOOP

MODCB RPL=(6), Switch to direct processing to store x
OPTCD=(DIR,KEY) records in slots 51 and 26.

 LTR 15,15
 BNZ GENFAIL
 LA 7,51

ST 7,RCDNO Initialize argument to slot 51.
... Move new record into WORK.
PUT RPL=(6) Store record in slot 51.

 LTR 15,15
BNZ PUTERR Request was not accepted, or failed.

 LA 7,26
ST 7,RCDNO Initialize argument to slot 26.
... Move new record into WORK.

 ...
PUT RPL=(6) Store record in slot 26.

 LTR 15,15
BNZ PUTERR Request was not accepted, or failed.

 B RETURN
GENFAIL ... Generation or modification failed.

PUTERR ... PUT request was not accepted, or failed.

RETURN ... Terminate program.

WORK DS CL1ðð 1ðð-byte work area that contains x
record to be stored by PUT macro.

RCDNO DS CL4 4-byte relative record number.

Both skip-sequential and direct processing can be used to allocate a fixed-length
RRDS. The ACB is opened for output. The 4-byte search argument (RCDNO)
indicates the slot number where the record is to be stored.

 Chapter 3. VSAM Macro Descriptions and Examples 77

 PUT

Example 4: Keyed-Sequential Insertion (Fixed-Length RRDS)
In this example, a PUT macro is used to insert twenty 100-byte records into empty
slots of a previously loaded fixed-length RRDS. If the slot is empty when the PUT is
issued, the record is stored and the slot number (returned in the argument field) is
stored in a table. If the slot is not empty when the PUT is issued, a duplicate record
error indication is returned. When a duplicate record is indicated, the PUT is
reissued until the record is successfully stored in an empty slot in the data set.

OUTACB ACB MACRF=(KEY,SEQ, x
 . OUT)
 .

GENCB BLK=RPL, Generate a request parameter list. x
 ACB=OUTACB, x
 AREA=WORK, x
 AREALEN=1ðð, x
 ARG=RCDNO, x
 OPTCD=(KEY,SEQ)

 LTR 15,15
 BNZ GENERR

LR 6,1 Save the address of the RPL.
LA 4,RRNTBLE+8ð Initialize address of end of table.

LA 3,RRNTBLE Initialize index to relative record x
 number table.
WRITERCD ... Move record into work area.
 .
 .
 PUT RPL=(6)
 LTR 15,15

BZ STRCDNO Branch, if PUT is successful.
 LA 1ð,8

CLR 1ð,15 Test for logical error.
 BNE PUTERR

TESTCB RPL=(6),FDBK=8, Test for duplicate record. x
 ERET=TESTERR

BE WRITERCD Branch, if duplicate record, and try x
to store record in next slot.

 B PUTERR
STRDCNO ...

MVC ð(4,3)RCDNO Store relative record number in x
 RRNTABLE.

LA 3,4(3) Increment to next table entry.
 CLR 3,4

BE RETURN If table full, return to caller.
B WRITERCD Write next record.

GENERR ... Error routine for GENCB macro.

TESTERR ... Error routine for TESTCB macro.

PUTERR ... Error routine for PUT macro.

RETURN ... Return to caller or terminate program.

RCDNO DS CL4 4-byte relative record number x
 (argument) field.
RRNTBLE DS 2ðF Relative record number table.

WORK DS CL1ðð 1ðð-byte work area that contains x
record to be stored by PUT macro.

78 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

Each record is stored in the next available slot in the data set. When a record is
successfully stored, its relative record number is recorded in a table.

Example 5: Skip-Sequential Insertion (KSDS, Variable-Length
RRDS)
In this example, one PUT macro is used to insert multiple fixed-length, 100-byte
records. Records are to be moved asynchronously from a work area.

OUTPUT ACB MACRF=(KEY,SKP, x
 . OUT)
 .

GENCB BLK=RPL, Generate 5 request parameter lists x
 COPIES=5, at execution. x
 ACB=OUTPUT, x
 AREALEN=1ðð, x
 OPTCD=(KEY,SKP, x
 ASY,NUP,MVE), x
 RECLEN=1ðð

 LTR 15,15
 BNZ CHECKO

Calculate length of each list and use register notation with the MODCB macro
to complete each list:

 MODCB RPL=(2), x
 AREA=(3), x
 NXTRPL=(4)

 LTR 15,15
 BNZ CHECKO

Increase the value in each register and repeat the MODCB until all 5 request
parameter lists have been completed. The last time, register 4 must be set to
0:

 .
LOOP ... Restore address of first list in x

register 2. Build 5 records in WORK.

PUT RPL=(2) Register 2 points to the first RPL in x
the chain. The 5 records in WORK x
are stored with this one PUT request.

 LTR 15,15
 BNZ NOTACCEP
 .
 CHECK RPL=(2)
 LTR 15,15
 BNZ ERRO
 B LOOP
CHECKO ... Generation or modification failed.

NOTACCEP ...

ERROR ... Display the feedback field in each x
RPL to determine which one had error.

WORK DS CL5ðð Contains five 1ðð-byte work areas.

You give no search argument for storage: VSAM knows the position of the key field
in each record and extracts the key from it. Skip-sequential insertion differs from
keyed-direct insertion in the sequence in which records may be inserted (ascending
non-consecutive sequence versus random sequence) and in performance.

 Chapter 3. VSAM Macro Descriptions and Examples 79

 PUT

With skip-sequential insertion, if you insert two or more records into a control
interval, VSAM does not write the contents of the buffer to direct-access storage
until you have inserted all the records. With direct insertion, VSAM writes the
contents of the buffer after you have inserted each record.

Example 6: Keyed-Direct Insertion (KSDS, RRDS)
In this example, a PUT macro is used to move fixed-length, 100-byte records from
a work area.

OUTPUT ACB MACRF=(KEY,DIR, x
 OUT)

DIRECT RPL ACB=OUTPUT, x
 AREA=WORK, x
 AREALEN=1ðð, x
 OPTCD=(KEY,DIR, x
 ASY,NUP,MVE), x
 . RECLEN=1ðð
 .
LOOP PUT RPL=DIRECT
 LTR 15,15
 BNZ NOTACCEP
 ...
 CHECK RPL=DIRECT
 LTR 15,15
 BNZ ERROR
 B LOOP
NOTACCEP ... Request was not accepted.
ERROR ... Request failed.
 .
WORK DS CL1ðð Work area.

The macros are as follows:

� ACB specifies the data set, OUTPUT, into which records are to be inserted, is
opened for keyed-direct, output processing.

� RPL specifies the record to be inserted into the OUTPUT data set resides in a
100-byte area, WORK.

VSAM extracts the relative record number or key from the key field of each record
found at WORK. Using keyed-direct access is similar to using skip-sequential
access.

Example 7: Addressed-Sequential Addition (ESDS)
In this example, a PUT macro is used to add variable-length records to a data set.
The data set is assumed to be an entry-sequenced data set, because records
cannot be inserted into or added to a KSDS with addressed access.

80 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

BLOCK ACB MACRF=(ADR,SEQ, x
 OUT)

LIST RPL ACB=BLOCK, x
 AREA=NEWRCD, x
 AREALEN=1ðð, x
 OPTCD=(ADR,SEQ, x
 . SYN,MVE)
 .
LOOP ... Build the record.

L 3,source Put length of record into register 3.

MODCB RPL=LIST, Indicate length of new record. x
 RECLEN=(3)

 LTR 15,15
 BNZ CHECKO
 PUT RPL=LIST
 LTR 15,15
 BNZ ERROR
 B LOOP
CHECKO ... Modification failed.
ERROR ... Request was not accepted, or failed.
 .
NEWRCD DS CL1ðð Build record in this work area.

Each record is stored in the next position after the last record in the data set. You
do not have to specify an RBA or do any explicit positioning (with the POINT
macro). Addressed addition of records is identical to loading a data set: when
additional space is required, VSAM extends the data set.

The only difference between addressed-sequential and addressed-direct addition is
when the buffers are written to external storage. The buffer is written to external
storage only when it is full for sequential addition; it is written after each record for
direct addition. You cannot use direct storage to load records into a data set for the
first time; you must use sequential storage.

Example 8: Keyed-Sequential Update (KSDS, RRDS)
In this example, GET and PUT macros are used to retrieve and update
fixed-length, 50-byte records. Records are updated synchronously in a work area.
This example requires the use of a work area because you cannot update a record
in the I/O buffer.

UPDATA ACB MACRF=(KEY,SEQ, x
 OUT)

LIST RPL ACB=UPDATA, UPD indicates the record may be stored x
AREA=WORK, back (or deleted). x

 AREALEN=5ð, x
 OPTCD=(KEY,SEQ, x
 . SYN,UPD,MVE)
 .
LOOP GET RPL=LIST

 LTR 15,15
 BNZ ERROR

Decide whether to update the record.

BE LOOP Do not update it; retrieve another.

Update the record.

 Chapter 3. VSAM Macro Descriptions and Examples 81

 PUT

PUT RPL=LIST Store the record back.
 LTR 15,15
 BNZ ERROR
 B LOOP
ERROR ... Request was not accepted, or failed.
 .

WORK DS CL5ð VSAM puts the retrieved record here.

A GET for update (OPTCD=UPD) must precede a PUT for update. Besides
retrieving the record to be updated, GET positions VSAM at the record retrieved, in
anticipation of the succeeding update (or deletion). It is not necessary for you to
store back (or delete) the record you retrieved for update. VSAM's position at the
record previously retrieved allows you to issue another GET to retrieve the following
record. You cannot, however, store back the previous record: the position for
update has been forgotten because of the following GET.

Example 9: Keyed-Direct Update (KSDS, Variable-Length RRDS)
In this example, GET and PUT macros are used to retrieve and update records.
The MODCB macro is used to modify record length (RECLEN) in the request
parameter list when an update causes the record length to change. The maximum
record length is 120 bytes. The search argument is a full key (5 bytes), compared
equal.

INPUT ACB MACRF=(KEY,DIR, x
 OUT)

UPDTE RPL ACB=INPUT, UPD indicates the record may be x
AREA=IN, stored back (or deleted). x

 AREALEN=12ð, x
 OPTCD=(KEY,DIR, x
 SYN,UPD,KEQ, x
 FKS,MVE), x
 ARG=KEYAREA, x
 . KEYLEN=5
 .

Process input and get search argument into KEYAREA; proceed to retrieve a
record:

LOOP GET RPL=UPDTE
 LTR 15,15
 BNZ ERROR

SHOWCB RPL=UPDTE, Display the length of the record. x
 AREA=RLNGTH, x
 FIELDS=RECLEN, x
 LENGTH=4

 LTR 15,15
 BNZ CHECKO

Update the record. Does the update change the record's length?

82 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

BE STORE No; length not changed.

L 5,length Yes; load new length into register 5.

MODCB RPL=UPDTE, Modify length indication in the request x
 RECLEN=(5) parameter list.

 LTR 15,15
 BNZ CHECKO
STORE PUT RPL=UPDTE
 LTR 15,15
 BNZ ERROR
 B LOOP

ERROR ... Request was not accepted, or failed.

CHECKO ... Display or modification failed.
 .
IN DS CL12ð Work area for retrieving, updating, x

and storing a record.
KEYAREA DS CL5 Search argument for retrieving a x
 record.
RLNGTH DS F Area for displaying the length of a x
 retrieved record.

You cannot update records in the I/O buffer. A direct GET for update positions
VSAM at the record retrieved, in anticipation of storing back (or deleting) the
record. This positioning also allows you to switch to sequential access to retrieve
the next record. VSAM releases exclusive control of a control interval when a PUT
DIR is issued following a GET UPD request.

You do not have to store back a record that you retrieve for update, but, if you do
not store it back before another retrieval, the current updates are lost.

Example 10: Addressed-Sequential Update (ESDS)
In this example, GET and PUT macros are used to retrieve and update records in
an entry-sequenced data set. The records are variable in length, a maximum of 200
bytes. The lengths of the records are not changed by update (the length of a record
can never be changed by addressed access).

ENTRY ACB MACRF=(ADR,SEQ,OUT)

ADRUPD RPL ACB=ENTRY, UPD indicates update (or deletion). x
 AREA=WORK, x
 AREALEN=2ðð, x
 OPTCD=(ADR,SEQ, x
 . SYN,UPD,MVE)
 .
LOOP GET RPL=ADRUPD
 LTR 15,15
 BNZ ERROR

SHOWCB RPL=ADRUPD, Determine record length. x
 AREA=RECLEN, x
 FIELDS=RECLEN, x
 LENGTH=4

 LTR 15,15
 BNZ CHECKO
 .

 Chapter 3. VSAM Macro Descriptions and Examples 83

 PUT

 PUT RPL=ADRUPD
 LTR 15,15
 BNZ ERROR
 B LOOP
ERROR ... Request was not accepted, or failed.
CHECKO ... Display failed.
 .

WORK DS CL2ðð Record-processing work area.
RLNGTH DS F Display area for length of records.

If you have inactive records in your entry-sequenced data set, you may reuse the
space they occupy by retrieving the records for update and restoring a new record
in their place.

With a key-sequenced data set, it is not possible to change the length of records by
addressed update because the index is not used and VSAM could not split a
control interval if required because of changing record length.

Addressed-direct update varies from sequential update in the specification of an
RBA for a search argument.

Example 11: Marking Records Inactive (ESDS)
In this example, GET and PUT macros retrieve a record from an entry-sequenced
data set and mark it as inactive by putting a hexadecimal X'FF' in the first byte of
a record. The inactive record can only be sequentially retrieved for update.

ENTRYSEQ ACB MACRF=(ADR,DIR, x
 OUT)

LIST RPL ACB=ENTRYSEQ, UPD indicates update; storing the x
AREA=RECORD, record back marked inactive. x

 AREALEN=1ðð, x
 OPTCD=(ADR,DIR, x
 SYN,UPD,MVE), x
 . ARG=RBAAREA
 .
LOOP GET RPL=LIST
 LTR 15,15
 BNZ ERROR

Decide whether you still want the data in the record.

BE LOOP Yes; retrieve the next record.

MVI RECORD,X'FF' No; flag the record inactive.

PUT RPL=LIST For an entry-sequenced data x
set, storing the record with x
an inactive indicator is x

 equivalent to deletion.
 LTR 15,15
 BNZ ERROR
 B LOOP
ERROR ... Request was not accepted, or failed.
RECORD DS CL1ðð Work area for marking records.
RBAAREA DS F Search argument for retrieving record.

You cannot delete an entry-sequenced data set record. You can mark an ESDS
record inactive by placing a unique flag in a conventional part of the record so that
when the record is subsequently retrieved, the flag causes the record to be

84 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 RPL

bypassed. To reuse the space occupied by an inactive ESDS record, retrieve it for
update and store a new record in its place.

RPL—Generate a Request Parameter List at Assembly Time
Use the RPL macro to generate a request parameter list. Values for RPL macro
subparameters can be specified as absolute numeric expressions, character
strings, codes, and expressions that generate valid relocatable A-type address
constants.

The format of the RPL macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the generated
request parameter list. You can use label in the request macros to give the
address of the list. You can use label in the NXTRPL parameter of the RPL
macro, when you are chaining request parameter lists, to indicate the next list.

ACB=address
specifies the address of the access method control block identifying the data
set to which access is requested. If you used the ACB macro to generate the
control block, you may specify the label of that macro for the address. If the
ACB parameter is not coded, you must specify the address before issuing the
request.

AM=VSAM
specifies the access method using the control block is VSAM.

[label] RPL [ACB= address]
[,AM=VSAM]
[,AREA= address]
[,AREALEN= abs expression]
[,ARG=address]
[,ECB=address]
[,KEYLEN= abs expression]
[,TIMEOUT=number]
[,MSGAREA= address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV |KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,NWAITX|WAITX]
 [,LOC|MVE]
 [,NRI|CR]
 [,RBA |XRBA])]
[,RECLEN=abs expression]
[,TRANSID=abs expression]

 Chapter 3. VSAM Macro Descriptions and Examples 85

 RPL

AREA=address
specifies the address of a work area to and from which VSAM moves a data
record if you request it to do so (with the RPL parameter OPTCD=MVE). If your
request is to process records in the I/O buffer (OPTCD=LOC), VSAM puts into
this work area the address of a data record within the I/O buffer.

AREALEN= abs expression
specifies the length, in bytes, of the work area whose address is specified by
the AREA parameter. Its minimum for OPTCD=MVE is the size of a data record
(of the largest data record, for a data set with records of variable length). For
OPTCD=LOC, the area should be 4 bytes to contain the address of a data
record within the I/O buffer.

ARG=address
specifies the address of a field that contains the search argument for direct
retrieval, skip-sequential retrieval, and positioning. For a RRDS, the ARG field
must be 4 bytes long. For direct or skip-sequential processing, this field
contains your search argument, a relative record number. For sequential
processing (OPTCD=(KEY,SEQ)), the 4 bytes are required for VSAM to return
the feedback RRN. For keyed access (OPTCD=KEY), the search argument is a
full or generic key or relative record number. For addressed access
(OPTCD=ADR), the search argument is an RBA. If you specify a generic key
(OPTCD=GEN), you must also specify in the KEYLEN parameter how many of
the bytes of the full key you are using for the generic key. ARG is also used
with WRTBFR and MRKBFR. Using WRTBFR and MRKBFR to share
resources is described in DFSMS/MVS Using Data Sets .

ECB=address
specifies the address of an event control block (ECB) you may supply. VSAM
indicates in the ECB whether a request is complete or not (using standard
completion codes, which are described in OS/390 MVS System Codes). You
can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is
complete, you give up control and must wait for completion.) The ECB
parameter is always optional.

KEYLEN=abs expression
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are using
for a search argument (given in the field addressed by the ARG parameter).
This parameter is specified as a number from 1 through 255. It is required
when the search argument is a generic key. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the data set
when you open the data set. This parameter is ignored for HFS files.

TIMEOUT=number
For RLS only, specifies the time in seconds that your program is willing to wait
to obtain a lock on a VSAM record when a lock on the record is already held
by another program. A non-zero value for TIMEOUT (or if TIMEOUT is not
specified) specifies the time (in seconds) this program will wait for the other
program(s) to release the lock. A value of zero specifies TIMEOUT processing
is NOT to be performed by VSAM for this request. That is, if the record lock
required by the request is held by another program, the program waits until the
other program releases the lock regardless of how long that might be. This
parameter is ignored for HFS files.

86 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 RPL

MSGAREA=address
specifies the address of an area you may, optionally, supply for VSAM to send
you a message in case of a physical error. The format of a physical error
message is given in “Reason Code (Physical Errors)” on page 149.

MSGLEN=abs expression
specifies the size, in bytes, of the message area indicated in the MSGAREA
parameter. If MSGAREA is specified, MSGLEN is required. The minimum size
of a message is 128 bytes. If you provide less than 128 bytes, no message is
returned to your program.

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this
parameter from the macro that generates the last list in the chain. When you
issue a request defined by a chain of request parameter lists, indicate in the
request macro the address of the first parameter list in the chain. This
parameter is not supported for HFS files and, if it is specified with a non-zero
value results in an error on a subsequent GET, PUT, or POINT.

OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,NWAITX|WAITX]
 [,LOC|MVE]
 [,CR|NRI]
 [,RBA |XRBA])

specifies the subparameters governing the request defined by the request
parameter list. Each group of subparameters has a default; subparameters are
shown in Figure 3 with defaults underlined. Only one subparameter from each
group can be specified. Some requests do not require a subparameter from all
of the groups to be specified. The groups that are not required are ignored.
Thus, you can use the same request parameter list for a combination of
requests (GET, PUT, POINT, for example) without zeroing out the inapplicable
subparameters each time you go from one request to another.

Figure 3 (Page 1 of 5). OPTCD Options

Option Meaning

ADR Addressed access to a key-sequenced or an entry-sequenced data
set: RBAs are used as search arguments and sequential access is
done by entry sequence.

RLS does not support access to a KSDS.

CNV Control interval access. Control interval access is not allowed for
compressed data sets.

RLS does not support CNV access. This parameter is ignored for
HFS files and if it is specified results in an error on a subsequent
GET, PUT, or POINT.

 Chapter 3. VSAM Macro Descriptions and Examples 87

 RPL

Figure 3 (Page 2 of 5). OPTCD Options

Option Meaning

KEY Keyed access to a RRDS or KSDS. Keys or relative record numbers
are used as search arguments and sequential access is done by key
or relative record number sequence.

DIR Direct access to a RRDS, KSDS, or ESDS.

SEQ Sequential access to a RRDS, KSDS, or ESDS.

SKP Skip sequential access.

ARD User's argument determines the record to be located, retrieved, or
stored.

LRD Last record in the data set is to be located (POINT) or retrieved
(GET direct); requires OPTCD=BWD.

FWD Processing to proceed in a forward direction.

BWD Processing to proceed in a backward direction; for keyed (KEY) or
addressed (ADR) sequential (SEQ) or direct (DIR) requests; valid for
POINT, GET, PUT, and ERASE operations; establish positioning by
a POINT with OPTCD=BWD or by a GET direct with
OPTCD=(NSP,BWD). When OPTCD=BWD is specified,
subparameters KGE and GEN are ignored; subparameters KEQ and
FKS are assumed. This parameter is ignored for HFS files and if it is
specified results in an error on a subsequent GET, PUT, or POINT.

ASY Asynchronous access; VSAM returns to the processing program after
scheduling a request so the program can do other processing while
the request is being carried out.

SYN Synchronous access; VSAM returns to the processing program after
completing a request.

NSP With OPTCD=DIR only, VSAM is to remember its position (for
subsequent sequential access); that is, the position is not to be
forgotten unless an ENDREQ macro is issued.

NUP A data record being retrieved will not be updated or deleted; a record
being stored is a new record; VSAM does not remember its position
for direct requests into a work area.

UPD A data record being retrieved may be updated or deleted; a record
being stored or deleted was previously retrieved with OPTCD=UPD;
VSAM remembers its position for sequential and direct GET
requests. When PUT, ERASE or ENDREQ is issued after a DIRUPD
GET request, VSAM releases exclusive control. This parameter is
not supported for HFS files, and if it is specified, results in an error
on a subsequent GET, PUT, or POINT.

KEQ For GET with OPTCD=(KEY,DIR) or (KEY,SKP) and for POINT with
OPTCD=KEY, the key (full or generic) that you provide for a search
argument must equal the key or relative record number of a record.
For a RRDS, KEQ is assumed except for POINT.

KGE For the same cases as KEQ, if the key (full or generic) that you
provide for a search argument does not equal that of a record, the
request applies to the record that has the next higher key. If using
POINT with a RRDS, KGE positions to the specified relative record
number whether the slot is empty or not. If the relative record
number is greater than the highest existing record, EOD is returned.
A subsequent PUT will insert the record at this position.

FKS A full key is provided as a search argument.

88 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 RPL

Figure 3 (Page 3 of 5). OPTCD Options

Option Meaning

GEN A generic key is provided as a search argument; give the length in
the KEYLEN parameter. Generic keys are not supported for a
variable-length RRDS.

NWAITX Never take the UPAD or RLSWAIT exit.

WAITX If OPTCD=SYN and the ACB's MACRF=LSR GSR and UPAD exit
routing is specified, VSAM takes the UPAD exit at points when
VSAM would normally issue a WAIT.

For RLS, take the RLSWAIT exit which is active for this request.

LOC For retrieval, VSAM leaves the data record in the I/O buffer for
processing, unless the data set is compressed, in which case VSAM
moves the record to a work area; not valid for PUT or ERASE; valid
for GET with OPTCD=UPD. However, to update the record, you must
build a new version of the record in a work area and modify the
request parameter list OPTCD from LOC to MVE before issuing a
PUT. For keyed-sequential retrieval, modifying key fields in the I/O
buffer may cause incorrect results for subsequent GET requests until
the I/O record is reread. Not valid for requests with spanned
records. For HFS files, LOC mode is supported but requires extra
overhead to get storage in the user space and move the record.

MVE For retrieval, VSAM moves the data record to a work area for
processing, and for storage, VSAM moves it from the work area to
the I/O buffer.

CR For RLS GET and POINT only, CR(consistent read integrity)
specifies that a share lock is to be obtained and released as part of
GET processing. CR specifies the application wants this request to
be serialized with update/erase of this record by other

For RLS POINT, the share lock remains held on successful
completion of the POINT CR request.

For RLS GET, after moving a copy of the record to the area pointed
to by the RPL AREA parameter, the share lock is released.

If neither NRI, or CR is specified, the NRI/CR option is determined in
the following order:

� RLSREAD specification on the ACB, if any,
� RLS JCL specification, if any,
� NRI is assumed.

If there are multiple specifications in the RPL, CR takes precedence
over NRI.

 Chapter 3. VSAM Macro Descriptions and Examples 89

 RPL

Figure 3 (Page 4 of 5). OPTCD Options

Option Meaning

NRI For RLS GET NUP and POINT only, NRI (no read integrity) specifies
no locking on a GET(non-update). Since a lock is not obtained on
the record, another application or transaction may currently hold an
exclusive lock on the record. For a recoverable sphere, the returned
record may be an uncommitted change which may be later backed
out (this form of processing is sometimes referred to as “dirty read”).
The opposite form of read processing is provided by the CR option
where if another application/transaction holds an exclusive lock on
the record, the reader waits for release of the exclusive lock and thus
does NOT read an uncommitted change.

If neither NRI or CR is specified, the NRI/CR option is determined in
the following order:

� RLSREAD specification on the ACB, if any,
� RLS JCL specification, if any,
� NRI is assumed.

If there are multiple specifications in the RPL, CR takes precedence
over NRI.

Note: Insert or update of a base cluster record can result in a
concurrent NRI read to the record by an alternate index path
to receive a false error (return code 8, reason code 144 in
Figure 20 on page 140). RLS obtains a record lock and
retries the request to be sure this is not a false condition.

RBA For addressed accessing (OPTCD=ADR), the ARG field contains the
address of a 4-byte RBA. RBA is the default.

If the data being referenced by RBA for an extended addressing
KSDS is less than 4GB, you do not have to code this parameter. For
data with RBA greater than 4GB the RPL must specify extended
addressing (XRBA) and an 8-byte RBA is required. Also, to retrieve
an 8-byte RBA using SHOWCB for the RPL, XRBA must be used
instead.

90 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 RPL

RECLEN=abs expression
specifies the length, in bytes, of a data record being stored. This parameter is
required for a PUT request.

For GET requests, VSAM puts the length of the record retrieved in this field in
the request parameter list. It will be there if you update and store the record.

TRANSID=abs expression
specifies a number that relates modified buffers in a buffer pool. Used in
shared resource applications and described in DFSMS/MVS Using Data Sets.
This parameter is ignored for HFS files.

Figure 3 (Page 5 of 5). OPTCD Options

Option Meaning

XRBA For addressed accessing (OPTCD=ADR), the ARG field contains the
address of an 8-byte RBA search argument.

While you can specify RBA while using XRBA, the following
considerations apply to accessing by RBA values:

� For a GET extended addressing (RBA greater than 4GB)
request, you must specify an OPTCD which includes DIR, ADR,
and XRBA.

� For a POINT extended addressing request, you must specify an
OPTCD which includes ADR and XRBA.

� For a MRKBFR extended addressing request, you must specify
an OPTCD which includes XRBA. The ARG field has the
address of a 16 byte field containing the beginning and ending 8
byte RBAs of the range.

� For a SCHBFR extended addressing request, you must specify
an OPTCD which includes XRBA. The ARG field has the
address of a 16 byte field containing the beginning and ending 8
byte RBAs of the range.

� For a WRTBFR TYPE=DRBA extended addressing request, you
must specify an OPTCD which includes XRBA. The ARG field
has the address of an 8 byte field containing the 8 byte RBA to
be located and written.

If the data being referenced by RBA for an extended addressing
KSDS is less than 4GB, you do not have to code this parameter. For
data with RBA greater than 4GB the RPL must specify extended
addressing (XRBA) and an 8-byte RBA is required. Also, to retrieve
an 8-byte RBA using SHOWCB for the RPL, XRBA must be used
instead.

XRBA specification can be used for any data set (whether or not it is
extended addressable).

Example: RPL Macro
In this example, an RPL macro is used to generate a request parameter list named
PARMLIST.

 Chapter 3. VSAM Macro Descriptions and Examples 91

 SCHBFR

ACCESS ACB MACRF=(SKP,OUT), x
 DDNAME=PAYROLL

PARMLIST RPL ACB=ACCESS, x
 AM=VSAM, x
 AREA=WORK, x
 AREALEN=125, x
 ARG=SEARCH, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x

OPTCD=(SKP,UPD) Most OPTCD defaults are appropriate x
 to assumptions.

WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128

The ACB macro named ACCESS, specifies skip-sequential retrieval for update.
Further details may be provided on a DD statement named PAYROLL.

The RPL macro's parameters are:

� ACB associates the request parameter list with the access method control
block generated by ACCESS.

� AREA and AREALEN specify a work area, WORK, that is 125 bytes long.

� ARG specifies the search argument is defined at SEARCH. The search
argument is 8 bytes long.

� MSGAREA and MSGLEN specify a message area, MESSAGE, that is 128
bytes long. The message area is provided for physical error messages.

� OPTCD specifies skip-sequential processing and specifies a retrieved record
may be updated or deleted.

� NSR is assumed.

Because KEYLEN is not coded, a full-key search is assumed.

 SCHBFR—Search Buffer
If you are using local or global shared resources, you can use the SCHBFR macro
to search a buffer.

The format of the SCHBFR macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the SCHBFR
macro.

BFRNO=abs expression
specifies the number of the buffer VSAM is to search first. The buffers
preceding it in the buffer pool are not searched. The default is 1; that is, the
first buffer is searched first. (If the number is coded in register notation, all
registers except 1 and 13 may be used.)

[label] SCHBFR [BFRNO=abs expression]
,RPL=address

92 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCAT

The meaning of BFRNO depends on the total number of buffers in the buffer
pool and the number of control intervals in the RBA range given by the RPL
ARG parameter. This number is the buffer number relative to the beginning of
the RBA range if the total number of buffers in the buffer pool is greater than
(3/4 x number of CIs in the RBA range)+3. Otherwise, it is the buffer number
on the physical buffer chain.

Note: With a compressed format data set, records may be compressed and
each buffer may contain an unpredictable amount of data.

RPL=address
specifies the address of the request parameter list defining the SCHBFR
request. These RPL parameters have meaning for SCHBFR:

ACB=address
AREA=address

If a buffer is found, the area whose address is specified contains its
address (OPTCD=LOC) or a copy of its contents (OPTCD=MVE). With
compressed data sets, the contents of the buffer will not be in a readable
format. SCHBFR is not recommended for compressed data sets.

AREALEN= abs expression
At least 4 with OPTCD=LOC; at least control interval size with
OPTCD=MVE.

ARG=address
ARG gives the address of an 8-byte field containing the beginning and
ending control interval RBAs of the range to be searched on. For
compressed data sets, the RBA of another record or the address of the
next record in a buffer cannot be determined using the length of the current
record or the length of the record provided to VSAM.

For extended addressing, the address of a 16-byte field containing the
beginning and ending 8-byte RBAs of the range.

ECB=address

OPTCD=({ASY|SYN},{LOC|MVE })

TRANSID=abs expression

All other RPL parameters are ignored. RPLs are assumed not to be chained.
Control interval access is assumed.

If the ACB to which the RPL is related has MACRF=GSR, the program issuing
SCHBFR must be in supervisor state with protection key 0 to 7.

SHOWCAT—Display the Catalog
The information shown here is provided for compatibility only.

The SHOWCAT (show, or display, the catalog) macro enables you to retrieve
information from a catalog independently of an open data set defined in the catalog.

 Chapter 3. VSAM Macro Descriptions and Examples 93

 SHOWCAT

The SHOWCAT macro has three forms: standard, list, and execute. Although the
VSAM catalog and integrated catalog facility catalog have different structures, the
SHOWCAT macro supports both VSAM and integrated catalog facility catalogs.
Thus, all references to catalogs in this discussion of the SHOWCAT macro apply to
both VSAM and integrated catalog facility catalogs.

You can use the IGGSHWPL macro to generate a DSECT statement and labels for
the fields in the parameter list for SHOWCAT.

The entries in a catalog are interrelated. More than one entry is required to
describe an object and its associated objects; one entry points to one or more other
entries, which point to yet others. Figure 4 shows the interrelationship among
entries that describe the following types of objects:

� Alternate index (G)
 � Cluster (C)
� Data component (D)
� Index component (I)

 � Path (R)
� Upgrade set (Y)

For example, an alternate-index entry points to the entries of its data and index
components, its base cluster, and its path. SHOWCAT enables you to follow the
arrows in Figure 4. You first issue SHOWCAT on the name of an object.

Path (R) Path (R)

Upgrade
Set (Y)

Data (D)
Component

Data (D)
Component

Index (I)
Component

Index (I)
Component

Cluster (C) Alternate
Index (G)

Figure 4. Interrelationship Among Catalog Entries. An arrow indicates a pointer from one
entry to another.

The information VSAM returns to you includes the control interval numbers of
catalog records in entries describing associated objects. You then issue SHOWCAT
on a control interval number to retrieve information from one of these other entries.

The first time you issue SHOWCAT, VSAM searches VSAM catalogs in the
following order to locate the entry that describes the object you name:

1. The STEPCAT or JOBCAT user catalog or catalogs (catalogs can be
concatenated under STEPCAT or JOBCAT).

2. The master catalog.

94 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCAT

3. When the object has a qualified name, the catalog, if any, whose name or alias
is the same as the first-level qualifier of the object's name.

VSAM returns the address of the access method control block that defines the
catalog. In subsequent use of SHOWCAT, you can specify that address, which
causes VSAM to search only that catalog.

SHOWCAT should not be used for HFS files as HFS files are not reflected in the
catalogs. Specifying the pathname in the NAME parameter is not valid and returns
unpredictable results.

SHOWCAT is valid in AMODE 24 mode only.

 SHOWCAT—Standard Form
The format of the SHOWCAT macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the SHOWCAT
macro.

ACB=address
specifies the address of the access method control block that defines the
catalog containing the entry from which to display information. You issue the
first SHOWCAT without ACB specified and VSAM supplies it to you for the next
SHOWCAT (see the description of the work area under the AREA operand).
Specifying ACB enables VSAM to go directly to the correct catalog without
searching other catalogs first. You should always specify ACB when specifying
CI instead of NAME.

AREA=address
specifies the address of the work area in which to display the catalog
information. The first 2 bytes of the area must give the length of the area,
including the 2 bytes. The minimum is 64. If the area is too small, VSAM
returns as much information as possible.

You can use the IGGSHWPL macro to generate a DSECT statement and labels for
the fields in the work area.

The format of the work area is:

[label] SHOWCAT [ACB= address]
[AREA= address]
[{CI=address|NAME=address}]

Offset Length
Symbolic
Name Description

0(X'00') 2 SHWLEN1 Length of the area, including the length of
this field (provided by you).

2(X'02') 2 SHWLEN2 Length of the area used by VSAM, including
the length of this field and the preceding
field.

 Chapter 3. VSAM Macro Descriptions and Examples 95

 SHOWCAT

The following fields contain one set of information for C, G, R, and Y types and
another set for D and I types:

The format of the work area for C, G, R, and Y types is:

Offset Length
Symbolic
Name Description

4(X'04') 4 SHWACBP The address of the ACB that defines the
catalog that contains the entry from which
information is displayed.

8(X'08') 1 SHWTYPE Type of object about which information is
returned:

C Cluster
D Data component
G Alternate index
I Index
R Path
Y Upgrade set

Offset
Length or Bit
Pattern

Symbolic
Name Description

9(X'09') 1 SHWATTR For C and Y types: reserved.

 For G type:

 x... SHWUP The alternate index may (1) or may not
(0) be a member of an upgrade set.
One way of verifying this is to display
information for the upgrade set of the
base cluster and check whether it
contains control interval numbers of
entries that describe the components of
the alternate index. Figure 4 on
page 94 shows how to get from the
alternate index's catalog entry to the
entries that describe its components (G
to C to D to Y to D and I).

 .xxx xxxx Reserved.

 For R type:

 x... SHWUP The path is (1) or is not (0) defined for
upgrading alternate indexes.

 .xxx xxxx Reserved.

10(X'0A') 2 SHWASS0 The number of association pointers
that follow.

96 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCAT

The format of the work area for D and I types is:

Offset
Length or Bit
Pattern

Symbolic
Name Description

 SHWACT Each association pointer identifies
another catalog entry that describes an
object associated with this C, G, R, or
Y object. The possible types of
associated objects are:

With C: D, G, I, R.
With G: C, D, G, I.
With R: C, D, G, I.
With Y: D, I.

Figure 4 on page 94 shows how the
catalog entries for all these objects are
interrelated.

12(X'0C') 1 SHWATYPE Type of object the entry describes.

13(X'0D') 3 SHWAC1 The control interval number of its first
record.

16(X'10') Next association pointer, and so on.
For type Y, if the area is too small to
display an association pointer for each
associated object, VSAM displays as
many pointers as possible and returns
a code of 4 in register 15. For types C
and G, if the area is too small, VSAM
displays as many pointers as possible,
but returns as a code of 0 in register
15 because fields for the main
associated objects can always be
displayed (in the smallest allowed work
area). For type R, fields for all
associated objects (five possible) can
always be displayed.

(An associated pointer occupies 4
bytes (1 byte for the associated entry
type and 3 bytes for its control interval
number). However, for all types except
Y, 4 additional bytes are required as
work space for the SHOWCAT
processor. For example, if you provide
80 bytes for associated objects, as
many as 10 association pointers can
be displayed for type C or G and 20 for
type Y.)

Offset Length
Symbolic
Name Description

9(X'09') 1 Reserved.

10(X'0A') 2 SHWDSB Relative position of the prime key
in records in the data component.

 Chapter 3. VSAM Macro Descriptions and Examples 97

 SHOWCAT

{CI=address|NAME=address}
specifies the address of an area that identifies the catalog entry containing the
desired information.

CI=address
specifies the area is 3 bytes long and contains the control interval number
(RBA divided by 512) of the first record in the catalog entry. You can issue
the first SHOWCAT with NAME specified, and then VSAM supplies control
interval numbers to you for other SHOWCATs (see the description of the
work area under the AREA operand). The type of object named must be C,
D, G, I, R, or Y. The 3-byte area must be separate from the work area,
even though VSAM returns a control interval number in the work area.

NAME=address
specifies the area is 44 bytes long and contains the name of the object
described by the entry. The name is left-justified and padded with blanks.
The type of object named must be C, D, G, I, or R.

Offset Length
Symbolic
Name Description

 SHWRKP For the data component of an
ESDS, there is no prime key and
this field is 0.

12(X'0C') 2 SHWKEYLN Length of the prime key.

14(X'0E') 4 SHWCISZ Control interval size of the data or
index component.

18(X'12') 4 SHWMREC Maximum record size of the data or
index component.

22(X'16') 2 SHWASS The number of association pointers
that follow.

 SHWACT Each association pointer identifies
another catalog entry that
describes an object associated with
this D or I object. The possible
types of associated objects are:

With D: C, G, Y.
With I: C, G.

 Figure 4 on page 94 shows how
the catalog entries for all these
objects are interrelated.

24(X'18') 1 SHWATYPE Type of object the entry describes.

25(X'19') 3 SHWACI The control interval number of its
first record.

28(X'1C') Next association pointer, and so
on. Fields for all associated objects
can always be displayed.

98 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCAT

 SHOWCAT—List Form
The format of the list form of SHOWCAT is:

MF=L
specifies that this is the list form of SHOWCAT.

AREA and {CI|NAME} are optional in the list form of SHOWCAT, but, if they are not
so specified, they must be specified in the execute form.

Note: For a detailed description of ACB, AREA, and CI|NAME parameters, refer to
the information contained in “SHOWCAT—Standard Form” on page 95.

[label] SHOWCAT [ACB= address]
[AREA= address]
[{CI=address|NAME=address}]
MF=L

 SHOWCAT—Execute Form
The format of the execute form of SHOWCAT is:

MF=({E|B}, address)
specifies this is the execute form of SHOWCAT.

E specifies the parameter list, whose address is given in address, is passed
to VSAM for processing.

B specifies the parameter list is to be built or modified, but is not passed to
VSAM. This form of the macro is similar to the list form, except that it works
at execution time and can modify a parameter list, as well as build it.

To build a parameter list, first issue SHOWCAT with only MF=(B, address)
specified, to zero out the area in which it will be built.

address
specifies the address of the parameter list. If you use register notation, you
may use register 1, and a register from 2 through 12. Register 1 is used to
pass the parameter list to VSAM (MF=E).

Note: For a detailed description of ACB, AREA, and CI|NAME parameters, refer to
the information contained in “SHOWCAT—Standard Form” on page 95.

[label] SHOWCAT [ACB= address]
[AREA= address]
[{CI=address|NAME=address}]
MF=({E|B}, address)

Expressions That Can Be Used for SHOWCAT
The values for an operand of SHOWCAT can be expressed as:

� An absolute numeric expression.

� A code or a list of codes separated by commas and enclosed in parentheses.

� A register (in parentheses) from 2 through 12 that contains an address or
numeric value. In the execute form of a macro, you can use register 1 for the

 Chapter 3. VSAM Macro Descriptions and Examples 99

 SHOWCAT

address of the parameter list. Equated labels can be used to designate a
register; for example, BFRNO=(BFR#), where the equate statement, BFR#
EQU 3, is included in the program.

� An expression valid for a relocatable A-type address constant; for example,
AREA=RETURN+4.

The expressions that can be used depend on the operand. Only absolute numeric
expressions, codes, registers, and relocatable A-type address constants are valid
for the list form of a macro.

Figure 5 shows the expressions allowed for each operand of SHOWCAT:

Figure 5. Operand Expressions for the SHOWCAT Macro

Operands

Absolute
Numeric

Code

Register

A-Type
Address

SHOWCAT (STANDARD)
ACB
AREA
CI
NAME

X
X
X
X

X
X
X
X

SHOWCAT (LIST)
ACB
AREA
CI
MF
NAME

X

X
X
X

X

SHOWCAT (EXECUTE)
ACB
AREA
CI
MF
 B
 E
 address
NAME

X
X

X
X
X

X
X

100 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—ACB

SHOWCB—Display Fields of an Access Method Control Block
The format of the SHOWCB macro used to display fields in an access method
control block is:

The subparameters of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the SHOWCB
macro.

ACB=address
specifies the address of the access method control block whose fields are
displayed. If you used the ACB macro with a label, you can specify the label
here. The ACB parameter is optional when you wish to display the length of an
access method control block (FIELDS=ACBLEN). (All access method control
blocks have the same length, so you need not specify the address of a
particular one.)

AREA=address
specifies the address of a return area you are supplying for VSAM to display
the contents of the fields specified in the FIELDS parameter. The contents of
the fields are displayed in the order in which you specify them. The area must
begin on a fullword boundary.

[label] SHOWCB ACB=address
,AREA=address
,LENGTH=abs expression
[,OBJECT=DATA |INDEX]
,FIELDS=([ACBLEN] [,AVSPAC]
 [,BFRFND] [,BSTRNO]
 [,BUFND] [,BUFNI]
 [,BUFNO] [,BUFRDS]
 [,BUFSP] [,CINV]
 [,CDTASIZE]
 [,DDNAME] [,ENDRBA]

[,ERROR] [,EXLST] [,FS]
 [,HALCRBA] [,KEYLEN]

[,LEVEL] [,LOKEY] [,LRECL]
[,MAREA] [,MLEN] [,NCIS]

 [,NDELR] [,NEXCP]
 [,NEXT] [,NINSR]
 [,NIXL] [,NLOGR]
 [,NRETR] [,NSSS]
 [,NUIW] [,NUPDR]

[,PASSWD] [,RELEASE] [,RKP]
 [,SDTASIZE]

[,SHRPOOL] [,STMST] [,STRMAX]
 [,STRNO] [,UIW]
 [,XAVSPAC] [,XENDRBA]
 [,XHALCRBA])

 Chapter 3. VSAM Macro Descriptions and Examples 101

 SHOWCB—ACB

LENGTH=abs expression
specifies the length, in bytes, of the return area you are providing for VSAM to
display the indicated fields in. (See the FIELDS parameter for the fields that
can be displayed and for the length of each field.) If the area is not large
enough for all the fields, VSAM does not display any of their contents and
returns a reason code (see “Control Block Manipulation Macro Return and
Reason Codes” on page 135).

OBJECT=DATA |INDEX
specifies whether fields are displayed for the data or for the index.

FIELDS=[ACBLEN][,AVSPAC]
 [,BFRFND][,BSTRNO]
 [,BUFND][,BUFNI]
 [,BUFNO][,BUFRDS]
 [,BUFSP][,CINV]
 [,CDTASIZE][,CINV]
 [,DDNAME][,ENDRBA]
 [,ERROR][,EXLST]
 [,FS][,HALCRBA]
 [,KEYLEN][,LEVEL]
 [,LOKEY][,LRECL]
 [,MAREA][,MLEN]
 [,NCIS][,NDELR]
 [,NEXCP][,NEXT]
 [,NINSR][,NIXL]
 [,NLOGR][,NRETR]
 [,NSSS][,NUIW]
 [,NUPDR][,PASSWD]
 [,RELEASE][,RKP][,SHRPOOL]
 [,STMST][,STRMAX]
 [,SDTASIZE]
 [,STRNO][,UIW]
 [,XAVSPAC][,XENDRBA]
 [,XHALCRBA])

specifies the fields whose contents are to be displayed. Some of the fields can
be displayed at any time; others only after a data set is opened. The ones that
can be displayed only after a data set is opened can, for a KSDS that has been
opened for keyed access, pertain either to the data or to the index. See the
OBJECT parameter.

Figure 6 explains the subparameters you can code in the FIELDS parameter
for an access method control block.

Figure 6 (Page 1 of 5). FIELDS Keyword Subparameters for an Access Method Control Block

Subparameter Fullwords Description of the Field

 Note: The following fields can be displayed at any time .

ACBLEN 1 Length of an access method control block (displaying the length of an
access method control block gives your program independence from
changes in the length that may occur from release to release of VSAM).

BSTRNO 1 Number of strings initially allocated for access to the base cluster by a
path. For RLS BSTRNO is ignored and the value specified in the ACB is
returned.

102 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—ACB

Figure 6 (Page 2 of 5). FIELDS Keyword Subparameters for an Access Method Control Block

Subparameter Fullwords Description of the Field

BUFND 1 Number of I/O buffers used for data, as specified in the ACB (or
GENCB). For RLS BUFND is ignored and the value specified in the
ACB is returned. This parameter has no effect for HFS files.

BUFNI 1 Number of I/O buffers used for index entries, as specified in the ACB (or
GENCB). For RLS BUFNI is ignored and the value specified in the ACB
is returned. This parameter has no effect for HFS files.

BUFSP 1 Amount of space specified in the ACB (or GENCB) for I/O buffers. For
RLS BUFSP is ignored and the value specified in the ACB is returned.
This parameter has no effect for HFS files.

DDNAME 2 Name of the DD statement that identifies the data set.

ERROR 1 The code returned by VSAM after the opening or closing of the data set
(see “OPEN—Connect Program and Data” on page 72 and
“CLOSE—Disconnect Program and Data” on page 30).

EXLST 1 Address of the exit list, if any; 0 if none.

LEVEL 2 Address (in first fullword) and length (in second fullword) of the field
containing the DFP level information.

MAREA 1 Address of the message area, if any; 0 if none.

MLEN 1 Length of the message area, if any; 0 if none.

PASSWD 1 Address of the field containing the password; the first byte of the field
contains the length of the password (in binary). This parameter has no
effect for HFS files.

RELEASE 2 Address (in first fullword) and length (in second fullword) of the field
containing the DFP release information. DFSMS/MVS DFSMSdfp
Advanced Services discusses how to use the IHADFA mapping macro
or the IGWASYS callable service for release determination.

SHRPOOL 1 Identification number of resource pool to be used for LSR processing.
SHRPOOL specification is ignored by RLS processing. This parameter
has no effect for HFS files.

STRMAX 1 Maximum number of strings concurrently active. For RLS this field is the
number of active strings associated with this ACB at the time the
request is issued.

STRNO 1 Number of requests for which VSAM is prepared to remember its
position in the data set.

For RLS the value specified in the ACB macro is ignored. After OPEN a
value of 1024 is returned, indicating the maximum number of strings
allowed.

 Note: The following fields can be displayed only after the data set
is opened. It is your responsibility to be sure that the ACB remains
open until the SHOWCB for these fields has completed. If the ACB
is closed while a SHOWCB is active for these fields, unpredictable
results can occur including abends.

AVSPAC 1 Amount of available space in the data component or index component,
in bytes. If the extended format data set might contain more than 4GB,
use XAVSPAC instead of AVSPAC.

BFRFND 1 Number of successful look-asides. For RLS this field is the number of
requests satisfied from the local cache or the CF cache.

 Chapter 3. VSAM Macro Descriptions and Examples 103

 SHOWCB—ACB

Figure 6 (Page 3 of 5). FIELDS Keyword Subparameters for an Access Method Control Block

Subparameter Fullwords Description of the Field

BUFNO 1 Number of I/O buffers actually in use for the data component or index
component. For RLS this field is set to zero. For HFS files this field is
set to zero.

BUFRDS 1 Number of buffer reads. For RLS this field is the number of times I/O is
done for a READ.

CDTASIZE 2 Value for the size of extended format data sets using compression.

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

CINV 1 Control interval size for the data component or index component.

ENDRBA 1 Ending RBA of the space used by the data component or index
component; not the RBA of any record in the data set, but of the last
used byte in the data set (high-used RBA). If the extended format data
set might contain more than 4GB, use XENDRBA instead of ENDRBA.

FS 1 Number of free control intervals per control area in the data component
(0 for OBJECT=INDEX). For HFS files this field is set to zero.

HALCRBA 1 High-allocated RBA; the relative byte address of the end of the data
component (OBJECT=DATA) or the index component
(OBJECT=INDEX). If the extended format data set might contain more
than 4GB, use XHALCRBA instead of HALCRBA.

KEYLEN 1 Length of the key of reference of the key field of data records in the data
component (whether OBJECT=DATA or INDEX).

LOKEY 2 Address of the field containing the low key (in first fullword) and the
length (in second fullword) of the low key of a KSDS data component.
For RLS LOKEY is not supported. A reason code is given if it is
specified.

LRECL 1 Length of data records in the data component (maximum length for
variable-length data records) or of index records in the index component
(control interval length minus 7).

NCIS 1 Number of control intervals split in the data component (0 for
OBJECT=INDEX). For HFS files this field is set to zero.

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

NDELR 1 Number of records deleted from the data component (0 for
OBJECT=INDEX).

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

NEXCP 1 Number of I/O requests VSAM has issued for access to the data
component or index component. For RLS NEXCP is a count of the
number of calls to the system buffer manager (includes calls that result
in either a CF cache access or an I/O).

104 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—ACB

Figure 6 (Page 4 of 5). FIELDS Keyword Subparameters for an Access Method Control Block

Subparameter Fullwords Description of the Field

NEXT 1 Number of extents now allocated to the data component or index
component (the maximum that can be allocated is 123 per VSAM
component. For HFS files this field is set to one.

NINSR 1 Number of records inserted into (or added to) the data component (0 for
OBJECT=INDEX).

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

NIXL 1 Number of levels in the index component (0 for OBJECT=DATA).

NLOGR 1 Number of records in the data component or index component. For
HFS files this field is set to zero.

NRETR 1 Number of records that have ever been retrieved from the data
component (0 for OBJECT=INDEX).

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

NSSS 1 Number of control areas split in the data component (0 for
OBJECT=INDEX). For HFS files this field is set to zero.

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

NUIW 1 Number of writes not initiated by the user. For RLS NUIW does not
apply, and is set to zero.

NUPDR 1 Number of updated records in the data component or index component.

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

RKP 1 Displacement of the key of reference of the key field from the beginning
of a data record (whether OBJECT=DATA or INDEX).

SDTASIZE 2 Value for the amount of source data for extended format data sets using
compression.

For RLS, this number is maintained on an ACB basis rather than a
component basis. That is, it is a count only for the current open of the
data set with this ACB. It is zero if no record has been processed since
the current open.

STMST 2 System time stamp, which gives the time and day of the last time the
data component or index component was closed, with bit 51 (counting
from 0 at the left) equivalent to one microsecond and bits 52 through 63
unused. For HFS files this field is set to the time of day of the current
open.

UIW 1 Number of user-initiated writes. For RLS UIW does not apply, and is set
to zero.

 Chapter 3. VSAM Macro Descriptions and Examples 105

 SHOWCB—ACB

Figure 6 (Page 5 of 5). FIELDS Keyword Subparameters for an Access Method Control Block

Subparameter Fullwords Description of the Field

XAVSPAC 2 Amount of available space in the data component or index component,
in bytes.

XAVSPAC (instead of AVSPAC) specifies the return area (you are
providing for VSAM for display) is two full words long to contain values
possibly greater than 4GB.

XENDRBA 2 Ending RBA of the space used by the data component or index
component; not the RBA of any record in the data set, but of the last
used byte in the data set (high-used RBA).

XENDRBA (instead of ENDRBA) specifies the return area (you are
providing for VSAM for display) is two full words long to contain values
possibly greater than 4GB.

XHALCRBA 2 High-allocated RBA; the relative byte address of the end of the data
component (OBJECT=DATA) or the index component
(OBJECT=INDEX).

XHALCRBA (instead of HALCRBA) specifies the return area (you are
providing for VSAM for display) is two full words long to contain values
possibly greater than 4GB.

Example 1: SHOWCB Macro (Display an Access Method Control Block)
In this example, a SHOWCB macro is used to display fields in an access method
control block. The fields displayed (KEYLEN, LRECL, and RKP) permit the program
to modify variables to process any one of many data sets that have different sized
key fields and records and different placements of key field in a record.

 SHOWCB ACB=CONTROL, x
 AREA=DISPLAY, x
 FIELDS=(KEYLEN, x
 LRECL,RKP), x
 LENGTH=12

DISPLAY DS OF Align on fullword boundary.
KEYLEN DS F
LRECL DS F
RKP DS F

The SHOWCB macro's parameters are:

� ACB specifies the address of the access method control block to be displayed.

� AREA specifies the area used to display access method control block fields
begins on a fullword boundary.

� FIELDS specifies the KEYLEN, LRECL, and RKP fields are displayed.

� LENGTH specifies the length of the area used for the display is 12 bytes,
enough to accommodate the specified fields.

This display allows the program to set up its variables for the particular data set it
has opened.

106 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—EXLST

Example 2: SHOWCB Macro (Display an Exit List Address)
In this example, a SHOWCB macro is used to get the address of an exit list by
displaying the address in an access method control block that uses the exit list.

 SHOWCB ACB=address, x
 AREA=address, x
 FIELDS=EXLST, x
 LENGTH=4

The SHOWCB macro's parameters are:

� ACB specifies the address of an access method control block from which the
address of an exit list is displayed.

� AREA and LENGTH specify an area and length, 4 bytes, used to display the
address of the exit list.

� FIELDS specifies the EXLST field in an access method control block is
displayed.

Note: If you issue a SHOWCB for a non-VSAM and non-VTAM ACB, the results
will be unpredictable.

SHOWCB—Display Fields of an Exit List
The format of the SHOWCB macro used to display fields in an exit list is:

The subparameters of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the SHOWCB
macro.

EXLST=address
specifies the address of the exit list whose fields are displayed. If you used the
EXLST macro with a label, you can specify the label here. The EXLST
parameter is optional only when you want to display the length an exit list can
have (see FIELDS=EXLLEN below). The SHOWCB macro does not support the
UPAD user exit.

AREA=address
specifies the address of a return area you supply for VSAM to display the
contents of the fields specified in the FIELDS parameter. The contents of the
fields are displayed in the order specified. The area must begin on a fullword
boundary.

[label] SHOWCB EXLST=address
,AREA=address
,LENGTH=abs expression
,FIELDS=([EODAD] [,EXLLEN] [,JRNAD]
 [,LERAD][,SYNAD])

 Chapter 3. VSAM Macro Descriptions and Examples 107

 SHOWCB—EXLST

LENGTH=abs expression
specifies the length, in bytes, of the return area you provide for VSAM to
display the indicated fields in. Each exit-list field requires a fullword. If the area
is not large enough for all the fields, VSAM does not display any of their
contents and returns an error code (see “Control Block Manipulation Macro
Return and Reason Codes” on page 135).

FIELDS=([EODAD][,EXLLEN][,JRNAD]
[,LERAD][,SYNAD])

specifies the values to display, as follows:

EODAD
specifies the address of the end-of-data-set routine is displayed.

EXLLEN
specifies the length of the exit list indicated in the EXLST parameter or if
EXLST is omitted, the maximum length an exit length can have, is
displayed.

JRNAD
specifies the address of the journalizing routine is displayed.

LERAD
specifies the address of the logical error analysis routine is displayed.

SYNAD
specifies the address of the physical error analysis routine is displayed.

You can use SHOWCB to display the address of an exit routine only if the exit
routine is indicated in the exit list. If it is not, the SHOWCB request fails. Use
TESTCB to test whether an entry for a given exit type is present in the exit list and
to find out whether the exit is active and the routine is to be loaded.

Example: SHOWCB Macro (Display the Length of an Exit List)
In this example, a SHOWCB macro is used to display the maximum length of an
exit list. The maximum length of an exit list is subsequently used in a GENCB
macro to get virtual storage for an exit list.

 SHOWCB AREA=LENGTH, x
 FIELDS=EXLLEN, x
 LENGTH=4

 L O,LENGTH Amount of storage for GETMAIN.
 GETMAIN R,LV=(ð)

LR 2,1 Address of storage for GENCB.

GENCB BLK=EXLST, Indirect notation for length of retrn x
 LENGTH=(\, area. x
 LENGTH), x
 . WAREA=(2)
 .
LENGTH DS F Contains the length of GENCB's return x
 area.

The SHOWCB macro's parameters are:

� AREA and LENGTH specify the area, which begins on a fullword boundary,
and its length, 4 bytes, that is used for the display.

108 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—RPL

� FIELDS specifies that the maximum length of an exit list is displayed. Because
only EXLLEN is specified, the EXLST parameter is omitted.

The GENCB macro specifies a return area in which an exit list is to be generated.
The length of the return area is located at LENGTH, where the maximum length of
an exit list was put as a result of the SHOWCB macro.

SHOWCB—Display Fields of a Request Parameter List
The format of the SHOWCB macro used to display fields in a request parameter list
is:

The subparameters of the SHOWCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the SHOWCB
macro.

RPL=address
specifies the address of the request parameter list whose fields are displayed.
If you used the RPL macro with a label, you can specify the label here. The
RPL parameter is optional when you want to display the length of a request
parameter list (FIELDS=RPLLEN). (All VSAM request parameter lists have the
same length, so you need not specify the address of a particular one.)

AREA=address
specifies the address of a return area you supply for VSAM to display the
contents of the fields specified in the FIELDS parameter. The contents of the
fields are displayed in the order specified. The area must begin on a fullword
boundary.

LENGTH=abs expression
specifies the length, in bytes, of the return area you provide for VSAM to
display the indicated fields in. Each request parameter list field requires a
fullword. If the area is not large enough for all the fields, VSAM does not
display any of their contents and returns an error code (see “Control Block
Manipulation Macro Return and Reason Codes” on page 135).

[label] SHOWCB RPL=address
,AREA=address
,LENGTH=abs expression
,FIELDS=([ACB][,AIXPC][,AREA][,AREALEN]
 [,ARG][,ECB][,FDBK][,FTNCD]
 [,KEYLEN][,MSGAREA]
 [,MSGLEN]
 [,NXTRPL][,RBA]
 [,RECLEN]
 [,RPLLEN]
 [,TRANSID]
 [,XRBA])

 Chapter 3. VSAM Macro Descriptions and Examples 109

 SHOWCB—RPL

FIELDS=([ACB][,AIXPC][,AREA][,AREALEN][,ARG]
[,ECB][,FDBK][,FTNCD][,KEYLEN]
[,MSGAREA][,MSGLEN]
[,NXTRPL][,RBA][,RECLEN]
[,RPLLEN][,TRANSID]
[,XRBA][,TRANSID])

specifies the fields whose contents are displayed. Figure 7 on page 110
explains the subparameters you can code in the FIELDS parameter for a
request parameter list.

Figure 7 (Page 1 of 2). FIELDS Keyword Subparameters for a Display Request Parameter List

Subparameter Fullwords Description of the Field

ACB 1 Address of the access method control block that relates the request
parameter list to the data.

AIXPC 1 1 Number of alternate index pointers.

AREA 1 Address of the return area the program uses to process a data record for
the access as defined by the request parameter list.

AREALEN 1 Length of the return area whose address is given in AREA.

ARG 1 Address of the field containing a search argument, if search arguments
are being used.

ECB 1 1 Address of an event control block, if any, in which VSAM indicates the
completion of requests defined by the request parameter list.

FDBK 1 1 Reason code that VSAM puts into the feedback field to describe the error
detected for the preceding request. (The meaning of this code depends
on the contents of register 15, which indicates whether the request was
successful or failed because of a logical or physical error. See “Record
Management Return and Reason Codes” on page 137.)

FTNCD 1 1 Code that describes the function in which a logical or physical error
occurred; indicates whether the upgrade set may have been modified
incorrectly by the preceding request. (The meaning of this code depends
on the contents of register 15, which indicates whether the request was
successful or failed because of a logical or physical error. See “Record
Management Return and Reason Codes” on page 137.)

KEYLEN 1 Length of the search argument, if a generic key is used for a search
argument.

MSGAREA 1 1 Address of the area, if any, into which VSAM puts physical error
messages.

MSGLEN 1 Length of the message area, if any.

NXTRPL 1 Address of the next request parameter list, if another one is chained to
this one.

RBA 1 1 Relative byte address of the most recently processed record; you could
use it to record the RBAs of records that you are retrieving or storing
sequentially or by key.

RECLEN 1 1 Length of the data record, access to which is defined by the request
parameter list.

RPLLEN 1 Length of a request parameter list.

TRANSID 1 Number that relates modified buffers in a buffer pool; described in
DFSMS/MVS Using Data Sets.

XRBA 1 2 The return area (you are providing for VSAM for display) is two full words
long to contain values possibly greater than 4GB.

110 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SHOWCB—RPL

Figure 7 (Page 2 of 2). FIELDS Keyword Subparameters for a Display Request Parameter List

Subparameter Fullwords Description of the Field

Note:

1. These fields are significant only if the requests are completed. Therefore, you must wait until the request
completes (for example, by issuing a CHECK if the request is asynchronous) before issuing SHOWCB.

Example: SHOWCB Macro (Display a Physical Error Message)
In this example, a SHOWCB macro is used to display a physical error message.
This example assumes that there is no SYNAD routine (or the SYNAD exit is
inactive). In this case, VSAM returns control to your program following the last
executable instruction if a physical error occurs. Register 15 indicates a physical
error (12), and the feedback field in the request parameter list contains a code
identifying the error. The message area contains more details about the error.
Register 1 points to the request parameter list.

REQUEST RPL MSGAREA=MESSGES, MSGLEN=128 x
 .
 SHOWCB AREA=MSGADDR, x
 FIELDS=MSGAREA, x
 LENGTH=4, x
 RPL=REQUEST

 LTR 15,15
 BNZ CHECKO
 .
CHECKO ... Display failed.
 .

MESSGES DS CL128 For VSAM to give you a detailed x
message about a physical error.

MSGADDR DS F For displaying the address of the x
message area with SHOWCB.

The RPL macro in this example provides for a message area, MESSGES, of 128
bytes to be used for any physical error message.

The SHOWCB macro's parameters are:

� AREA and LENGTH specify a 4-byte area, MSGADDR, used for displaying the
address of the message area for the associated request parameter list.

� FIELDS specifies the address of the message area is displayed.

� RPL specifies the name, REQUEST, of the request parameter list for which the
message area address is displayed.

 SHOWCB—List Form
The format of the list form of SHOWCB is:

[label] SHOWCB [{ACB|EXLST|RPL}= address]
,AREA=address
,FIELDS=(keyword[,keyword,...])
,LENGTH=abs expression
,MF={L|(L, address[,label])}
,[OBJECT={DATA |INDEX}]

 Chapter 3. VSAM Macro Descriptions and Examples 111

 SHOWCB—RPL

 SHOWCB—Execute Form
The format of the execute form of SHOWCB is:

[label] SHOWCB [{ACB|EXLST|RPL}= address
,AREA=address
,MF=(E,address)
[,OBJECT={DATA |INDEX}]

 SHOWCB—Generate Form
The format of the generate form of SHOWCB is:

[label] SHOWCB [{ACB|EXLST|RPL}= address]
,AREA=address
,FIELDS=(keyword[,keyword,...])
,LENGTH=number
,MF=(G,address[,label])
[,OBJECT={DATA |INDEX}]

112 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 TESTCB—ACB

TESTCB—Test a Field of an Access Method Control Block
Only one keyword can be specified each time you issue TESTCB.

The format of the TESTCB macro used to test a field in an access method control
block is:

The subparameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid

[label] TESTCB ACB=address
[,ERET=address]
[,OBJECT=DATA |INDEX]
,{ATRB=([ESDS][,KSDS][,LDS][,REPL]
 [,RRDS][,SPAN][,SSWD][,VRRDS][,WCK])|
ATRB=COMPRESS
ATRB=UNQ
ATRB=XADDR
MACRF=([ADR][,AIX][,CFX][,CNV][,DDN]
 [,DFR][,DIR][,DSN][,GSR][,ICI][,IN]
 [,KEY][,LEW][,LSR][,NCI][,NDF][,NFX][,NIS]
 [,NLW][,NRM][NRS][,NSR][,NUB][,OUT][,RST]
 [,SEQ][,SIS][,SKP][,UBF])|
OFLAGS=OPEN|
OPENOBJ={PATH|BASE|AIX}|
ACBLEN= abs expression|
AVSPAC=abs expression|
BSTRNO=abs expression|
BUFND=abs expression|
BUFNI=abs expression|
BUFNO=abs expression|
BUFSP=abs expression|
CINV=abs expression|
DDNAME=character string|
ENDRBA=abs expression|
ERROR=abs expression|
EXLST=address|
FS=abs expression|
KEYLEN=abs expression|
LRECL=abs expression|
MAREA=address|
MLEN=abs expression|
NCIS=abs expression|
NDELR=abs expression|
NEXCP=abs expression|
NEXT=abs expression|
NINSR=abs expression|
NIXL=abs expression|
NLOGR=abs expression|
NRETR=abs expression|
NSSS=abs expression|
NUPDR=abs expression|
PASSWD=address|
RKP=abs expression|
SHRPOOL=abs expression|
STMST=address|
STRNO=abs expression}

 Chapter 3. VSAM Macro Descriptions and Examples 113

 TESTCB—ACB

relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

ACB=address
specifies the address of the access method control block whose information
you want to test. Omit it only if you are testing the length of an access method
control block (ACBLEN=number). (All VSAM access method control blocks
have the same length.)

ERET=address
specifies the address of a routine to which VSAM gives control if an error
occurs and VSAM is unable to test for the specified condition. For example,
testing AVSPAC in an access method control block for an unopened data set
would fail. VSAM indicates in register 15 whether it could do the test and, if not,
indicates in register 0 the reason it could not. (The reasons are discussed
under “Control Block Manipulation Macro Return and Reason Codes” on
page 135.) A failure trying to execute TESTCB indicates a basic logical
problem in the processing program, so the error routine would probably issue
an ABEND. If it lets the program continue, it must branch to the continuation
point itself, and not return to VSAM.

OBJECT={DATA |INDEX}
specifies whether to test a field for data or for index.

ATRB=([ESDS][,KSDS][,LDS]
 [,REPL]
 [,RRDS]
 [,SPAN]
 [,SSWD]
 [,VRRDS]
 [,WCK])

specifies, for an open data set, the attribute to be tested for, as follows:

ESDS
specifies entry-sequenced data set.

KSDS
specifies key-sequenced data set.

LDS
specifies linear data set.

When specified, LDS must be the only parameter indicated by ATRB. All
other parameters are ignored and a binary test performed indicating
whether the data set is a linear data set (return code 0) or not (return code
1).

REPL
specifies some portion of the index is replicated.

RRDS
specifies relative record data set.

SPAN
specifies data set contains spanned records.

114 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 TESTCB—ACB

SSWD
specifies sequence set is adjacent to the data.

VRRDS
specifies variable-length relative record data set.

WCK
specifies write operations for the data set are being verified.

ATRB=COMPRESS
specifies if the data set is in compressed format.

ATRB=UNQ
specifies, for an open alternate index or path, that the alternate index requires
unique keys. The test for ATRB=UNQ must be made with a separate TESTCB
macro. VSAM examines the path control blocks for the UNQ attribute. VSAM
also examines the base cluster's control blocks for the other attributes. If other
attributes are tested for, VSAM examines the base cluster's control blocks for
all attributes. The test for ATRB=UNQ would give inaccurate results when
applied to the base cluster's control blocks.

ATRB=XADDR
specifies if the data set is in extended addressability format.

MACRF=([ADR][,AIX][,CFX]
 [,CNV] [,DDN]

 [,DFR] [,DIR]
 [,DSN] [,GSR]

 [,ICI][,IN]
 [,KEY][,LEW]
 [,LSR][,NCI]
 [,NDF][,NFX]
 [,NIS][,NLW]
 [,NRM][,NRS]
 [,NSR][,NUB]
 [,OUT][,RST]
 [,SEQ][,SIS]
 [,SKP][,UBF]

specifies a test is made to determine, at any time, what subparameter or
combination of subparameters is being used for processing.

OFLAGS=OPEN
specifies a test is made to determine, after open, whether the data set
identified by the control block was opened.

OPENOBJ=PATH|BASE|AIX
specifies a test is made to determine, after open, whether an opened object is
a path, a base cluster, or an alternate index.

The remaining parameters represent fields in an access method control block that
can be compared with the value specified. These fields are the same as those that
can be displayed by using the SHOWCB macro and are described in Figure 6 on
page 102.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table, for example, but do not alter the PSW
condition code that VSAM set to indicate the result of a test until you have tested it.

 Chapter 3. VSAM Macro Descriptions and Examples 115

 TESTCB—EXLST

Note: If you issue a TESTCB for a non-VSAM and non-VTAM ACB, the results
will be unpredictable.

Example: TESTCB Macro (Test for Data Set Attributes)
In this example, a TESTCB macro is used to determine whether a data set is a key
sequenced or an ESDS.

LIST RPL
 .
 SHOWCB AREA=DATAFCT, x
 FIELDS=ACB, x
 LENGTH=4, x
 RPL=LIST

 LTR 15,15
 BNZ CHECKO

TESTCB ACB=(\, Is the data set key sequenced? x
 DATAFCT), x
 ATRB=KSDS, x
 ERET=CHECKO

 BE KEYSEQ Yes.
 .
KEYSEQ ... Data set is key sequenced.

CHECKO ... Display or test failed.
 .
DATAFCT DS F For displaying address of access x

method control block.

The SHOWCB macro's parameters are:

� AREA and LENGTH specify a 4-byte area, DATAFCT, aligned on a fullword
boundary, used for the display.

� FIELDS and RPL specify the address of the access method control block in the
LIST request parameter list to be displayed.

The TESTCB macro's parameters are:

� ACB specifies that a field in the access method control block, the address of
which is located at DATAFCT, is to be tested. The SHOWCB macro put the
address of the access method control block at DATAFCT.

� ATRB specifies that the access method control block is to be tested to
determine whether it is a KSDS.

� ERET specifies that a routine named CHECK0 is to be given control if an error
occurs that makes it impossible to make the test.

There is no need to examine the feedback field in an EODAD routine. It can be
assumed to contain the end-of-data-set indication.

TESTCB—Test a Field of an Exit List
The format of the TESTCB macro used to test fields in an exit list is:

116 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 TESTCB—EXLST

The subparameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the TESTCB
macro.

EXLST=address
specifies the address of the exit list whose information you want to test. You
may omit it only if you are testing the maximum length of an exit list
(EXLLEN=number). The TESTCB macro does not support the UPAD user exit.

ERET=address
specifies the address of a routine to which VSAM gives control if an error
occurs and VSAM is unable to test for the specified condition. For example,
testing AVSPAC in an access method control block for an unopened data set
would fail. VSAM indicates in register 15 whether it could do the test and, if not,
indicates in register 0 the reason it could not. (The reasons are discussed
under “Control Block Manipulation Macro Return and Reason Codes” on
page 135.) A failure trying to execute TESTCB indicates a basic logical
problem in the processing program, so the error routine would probably issue
an ABEND. If it lets the program continue, it must branch to the continuation
point itself, and not return to VSAM.

EODAD={0|([address][,A|N][,L])}|
JRNAD={0|([address][,A|N][,L])}|
LERAD={0|([address][,A|N][,L])}|
SYNAD={0|([address][,A|N][,L])}

specifies the exit about which you are asking a yes-no question. If you code
more than one parameter for an exit name, each must equal the corresponding
value in the control block for you to get an equal condition. The values that
can be tested are:

0 specifies a test is to be made to determine whether an entry is provided for
the exit in the exit list.

address
specifies a test is to be made to determine whether this is the address of
the exit. Tests for an address result in an equal, unequal, high, low,
not-high, or not-low condition. Tests for a combination of an address and A,
N, or L result in an equal or unequal condition.

[label] TESTCB EXLST=address
[,ERET=address]
,{EODAD={0|([address][,A|N][,L])}|
JRNAD={0|([address][,A|N][,L])}|
LERAD={0|([address][,A|N][,L])}|
SYNAD={0|([address][,A|N][,L])}}
[,EXLLEN= abs expression]

 Chapter 3. VSAM Macro Descriptions and Examples 117

 TESTCB—EXLST

A|N
specifies a test is to be made to determine whether an exit is active (A) or
not active (N). Tests for A or N result in an equal or unequal condition.

L specifies a test is to be made to determine whether the address is the
location of an 8-byte field containing the name of a module to be loaded
rather than the entry point of the routine. Tests for L result in either an
equal or unequal condition.

EXLLEN=abs expression
specifies either the maximum length an exit list can have (if you do not code
the EXLST parameter) or the actual length of the exit list indicated by the
EXLST parameter. If you specify an exit, you may not also specify EXLLEN. If
you specify EXLLEN, you may not also specify an exit.

If you omit a routine to handle error conditions, you can examine register 15
following TESTCB by using a branch table. Do not alter the PSW condition code
that VSAM set to indicate the result of a test until you have tested it.

Example: TESTCB Macro (Use a Branch Table)
In this example, a TESTCB macro is used to test whether ENDPROC is the routine
supplied for the EODAD exit in the exit list EXITS, and whether the EODAD exit is
active. A branch table is used to determine whether the test is successful.

TESTCB EODAD=(ENDPROC,A), Is ENDPROC supplied and is the exit x
 EXLST=EXITS active?
 B \+4(15)

If the test was made successfully, register 15 contains 0 and the next
instruction is executed.

 B TEST1

If it was unsuccessful, register 15 contains 4 and the next instruction is
executed.

 ABEND 2,DUMP

TEST1 BNE NO

YES ... Yes; ENDPROC is supplied and active.

NO ... ENDPROC is not supplied, or the exit
is not active.

118 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 TESTCB—RPL

TESTCB—Test a Field of a Request Parameter List
The format of the TESTCB macro to test fields in a request parameter list is:

The subparameters of the TESTCB macro can be expressed as absolute numeric
expressions, as character strings, as codes, as expressions that generate valid
relocatable A-type address constants, in register notation, as S-type address
constants, and as indirect S-type address constants. “Subparameters with GENCB,
MODCB, SHOWCB, and TESTCB” on page 7, further defines these operand
expressions.

label
specifies 1 to 8 characters that provide a symbolic address for the TESTCB
macro.

RPL=address
specifies the address of the request parameter list whose information you want
to test. You may omit it only if you are testing the length of a request parameter
list (RPLLEN=number). (All request parameter lists have the same length.)

ERET=address
specifies the address of a routine to which VSAM gives control if an error
occurs and VSAM is unable to test for the specified condition. For example,
testing AVSPAC in an access method control block for an unopened data set
would fail. VSAM indicates in register 15 whether it could do the test and, if not,
indicates in register 0 the reason it could not. (The reasons are discussed
under “Control Block Manipulation Macro Return and Reason Codes” on
page 135.) A failure trying to execute TESTCB indicates a basic logical
problem in the processing program, so the error routine would probably issue

[label] TESTCB RPL=address
[,ERET=address]
,{AIXFLAG=AIXPKP|
AIXPC=abs expression|
FTNCD=abs expression|
IO=COMPLETE|
OPTCD=([ADR][,ARD][,ASY][,BWD]
 [,CNV] [,DIR][,FKS][,FWD]
 [,GEN][,KEQ][,KEY][,KGE][,LOC]
 [,LRD][,MVE][,NSP][,NUP][,SEQ]
 [,SKP][,SYN][,UPD])|
ACB=address|
AREA=address|
AREALEN= abs expression|
ARG=address|
ECB=address|
FDBK=abs expression|
KEYLEN=abs expression|
MSGAREA=address|
MSGLEN=abs expression|
NXTRPL=address|
RBA=abs expression|
RECLEN=abs expression|
RPLLEN=abs expression|
TRANSID=abs expression}

 Chapter 3. VSAM Macro Descriptions and Examples 119

 TESTCB—RPL

an abend. If it lets the program continue, it must branch to the continuation
point itself, and not return to VSAM.

AIXFLAG=AIXPKP
specifies prime-key pointers are used rather than RBAs.

AIXPC=abs expression
specifies the pointer count.

FTNCD=abs expression
specifies whether the upgrade set is correct or may have been modified by a
request. These codes are described under “Component Codes (RPLCMPON)”
on page 138.

IO=COMPLETE
specifies a test is made to determine whether an asynchronous request has
been completed. (When you issue a CHECK macro, you suspend processing
until a request has been completed.)

OPTCD=([,ADR][,ARD][,ASY][,BWD] [,CNV]
 [,DIR][,FKS][,FWD][,GEN][,KEQ]
 [,KEY][,KGE][,LOC][,LRD][,MVE]
 [,NSP][,NUP][,SEQ]
 [,SKP][,SYN][,UPD]

specifies that a test is to be made to determine what subparameter or
combination of subparameters is being used for the request. See Figure 3 on
page 87 for a description of these subparameters.

Example: TESTCB Macro (Test a Request Parameter List)
 TESTCB RPL=(3), x
 RECLEN=8ð

 BE NOCHNGE

CHANGE ... Because record length in the RPL not 8ð, x
modify length indicator so it is 8ð.

NOCHNGE ... Because record length in the RPL is 8ð, x
no change required.

The TESTCB macro's parameters are:

� RPL specifies the address of the request parameter list to be tested is
contained in register 3.

� RECLEN specifies that the record length indicated in the request parameter list
is to be tested to determine whether it is 80.

 TESTCB—List Form
The format of the list form of TESTCB is:

[label] TESTCB [{ACB|EXLST|RPL}= address]
[,ERET=address]
keyword={address|name|abs expression|option},...
,MF={L|(L, address[,label])}
[,OBJECT={DATA |INDEX}]

120 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 VERIFY

Note: If the execute form of TESTCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB=.

 TESTCB—Execute Form
The format of the execute form of TESTCB is:

Note: If the execute form of TESTCB is used and EXLST is used as a keyword to
be processed, the block must be identified by ACB=.

[label] TESTCB [{ACB|EXLST|RPL}= address]
[,ERET=address]
keyword={address|name|abs expression|option},...
,MF=(E,address)
[,OBJECT={DATA |INDEX}]

 TESTCB—Generate Form
The format of the generate form of TESTCB is:

[label] TESTCB [{ACB|EXLST|RPL}= address]
[,ERET=address]
keyword={address|name|abs expression|option},...
,MF=(G,address[,label])
[,OBJECT={DATA |INDEX}]

VERIFY—Synchronize End of Data
Use the VERIFY macro to synchronize end-of-data.

VERIFY is not supported for HFS files and returns an error if specified for these
files.

The format of the VERIFY macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the VERIFY
macro.

RPL=address
specifies the address of the request parameter list defining this VERIFY
request. You may specify the address in register notation (using a register from
1 through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

The following parameter and subparameter are required for VERIFY:

In the RPL, OPTCD=(CNV,...) must be specified.

[label] VERIFY RPL=address
[,ACTION=REFRESH]

 Chapter 3. VSAM Macro Descriptions and Examples 121

 WRTBFR

ACTION=REFRESH
specifies the VSAM control blocks are to be updated from the catalog after an
attempt is made to verify the high-used RBA. For a data set that has been
extended, VERIFY with ACTION=REFRESH causes an update to the control
block structure, reflecting the new extents.

If you do not specify ACTION=REFRESH for an extended data set, you must close
the data set and reopen it to obtain new extent information before you can verify it.

Any attempt to issue the VERIFY macro against a linear data set (LDS) results in a
logical error (return code 253 in the feedback field of the RPL).

RLS does not support VERIFY because RLS maintains the end of data set
information in the control blocks.

After verifying a data set, positioning must be established with a POINT macro for
sequential processing or with a GET macro with RPL OPTCD=DIR.

 WRTBFR—Write Buffer
If you are using local or global shared resources, you can use the WRTBFR macro
to write a buffer.

The format of the WRTBFR macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the WRTBFR
macro.

RPL=address
specifies the address of the request parameter list that defines the WRTBFR
request. An RPL need not be built especially for the WRTBFR. WRTBFR may
use an inactive RPL that defines other requests (GET, PUT, and so forth) for a
data set using the resource pool. The following RPL parameters have meaning
for WRTBFR:

ACB=address
ARG=address

For TYPE=DRBA, the address of a 4-byte field that contains the RBA to be
located and written. For compressed data sets, the RBA of another record
or the address of the next record in a buffer cannot be determined using
the length of the current record or the length of the record provided to
VSAM.

For extended addressing, the address of an 8-byte field that contains the
RBA to be located and written.

[label] WRTBFR RPL=address
,TYPE={ALL|CHK|DRBA|DS|LRU(percent)|TRN}

122 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRTBFR

ECB=address

OPTCD={ASY|SYN}

WRTBFR can be issued synchronously (SYN) or asynchronously (ASY). A
CHECK or ENDREQ must be issued to synchronize an asynchronous
WRTBFR request.

TRANSID=abs expression
specifies a number from 0 to 31.

All other RPL parameters are ignored. RPLs are assumed not to be chained.

If the ACB to which the RPL is related has MACRF=GSR, the program issuing
WRTBFR must be in supervisor state with protection key 0 to 7.

TYPE={ALL|CHK|DRBA|DS|LRU(percent)|TRN}
specifies which buffers are to be written.

Note: Before using WRTBFR TYPE=CHK|DRBA|TRN, be sure to release all
buffers. VSAM defers processing until all buffers are released. For
details about releasing buffers, see DFSMS/MVS Using Data Sets.

ALL
specifies that all modified unwritten index and data buffers in each buffer
pool in the resource pool are to be written. All buffers with physical errors
from WRTBFR are invalidated. Closing all the data sets that use a resource
pool causes the same buffers to be written.

CHK
is the same as TRN (below), but, if any error occurs in writing buffers,
transaction IDs continue to be associated with the buffers. If there are no
errors, transaction IDs are no longer be associated with the buffers.
WRTBFR TYPE=CHK can be used by a checkpoint routine to record
checkpoint information and leave buffers for which an error occurred as
they were for continued processing.

DRBA
specifies that one of the data set's data buffers is to be written. The buffer
to be written is identified with the RBA pointed to by the RPL ARG address.

DS
specifies that, for the data set defined by the ACB to which the WRTBFR's
RPL is related, all modified unwritten index and data buffers are to be
written and all buffers (including the Hiperspace buffers) are to be marked
empty, that is, invalidated. Therefore, WRTBFR TYPE=DS should be
issued only after all VSAM requests for the data set have been
quiesced. Otherwise, the results might be unpredictable.

LRU(percent)
specifies that some of the modified buffers in each buffer pool in the
resource pool are written. The percent is the percentage of buffers in each
pool that are examined for possible writing. The least recently used buffers
are examined. (If percent is coded in register notation, only registers 1 and
13 may not be used.)

TYPE=LRU is used for writing some modified buffers, without respect to a
particular data set or transaction ID, to ensure that buffers are available for
GET requests (without having to wait for buffers to be written).

 Chapter 3. VSAM Macro Descriptions and Examples 123

 WRTBFR

TRN
specifies all buffers in a buffer pool modified by requests with the
transaction ID specified in the WRTBFR's RPL are to be written.
Transaction IDs are no longer associated with these buffers if WRTBFR
completes successfully, or if a physical error occurs. Otherwise, the
transaction buffers are still associated with these buffers.

124 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Chapter 4. VSAM Macro Return and Reason Codes

This chapter describes the return codes and reason codes generated by the VSAM
macros used to open and close a data set, manage VSAM control blocks, and
issue data processing requests.

VSAM sets the return codes in register 15. (For information on register usage
conventions, see “Rules for Register Usage” on page 164.) These return codes are
paired with reason codes set in the access method control block (ACB) and the
request parameter list (RPL). Reason codes set in the ACB indicate open or close
errors. Reason codes set in the RPL indicate record management errors.

This manual lists return codes and reason codes in decimal and hexadecimal
values. The decimal value is shown first, followed by the hexadecimal value in
parentheses. Format descriptions and examples of each macro are shown in
Chapter 3, “VSAM Macro Descriptions and Examples” on page 7. Some VSAM
reason codes, used for diagnosis purposes, are shown in DFSMS/MVS DFSMSdfp
Diagnosis Reference.

OPEN Return and Reason Codes
When your program receives control after issuing an OPEN macro, the return code
in register 15 indicates if all the data sets were opened successfully:

Figure 8. Return Codes in Register 15 After OPEN

Return Code Meaning

0(X'0') All data sets opened successfully.

4(X'4') All data sets were opened successfully, but one or more attention messages were issued
(reason codes less than X'80').

8(X'8') At least one data set (VSAM or non-VSAM) was not opened successfully; the access method
control block was restored to the contents it had before the OPEN was issued; or, if the data set
was already open, the access method control block remains open and usable and is not
changed.

12(X'C') A non-VSAM data set was not opened successfully when a non-VSAM and a VSAM data set
were being opened at the same time. The non-VSAM data control block was not restored to the
contents it had before the OPEN was issued (and the data set cannot be opened without
restoring the control block).

16(X'10') One or more of the access method control blocks (ACBs) specified the RLS option but the
system has not been set up for RLS (the SMSVSAM server address space is not available). For
other DCBs and ACBs any condition described by other return codes is possible.

If register 15 contains a nonzero return code, use the SHOWCB macro to display
the corresponding reason code. The SHOWCB macro displays the error field in
each access method control block specified by the OPEN macro. (See
“SHOWCB—Display Fields of an Access Method Control Block” on page 101.)

Figure 9 lists the reason codes that may appear in this error field.

 Copyright IBM Corp. 1976, 1999 125

 Return and Reason Codes

Figure 9 (Page 1 of 5). OPEN Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

0(X'0') One of the following conditions exists:

� VSAM is processing the access method control block for some other request.
� The access method control block address is invalid.

72(X'48') Attention message: You tried to open a VSAM data set for non-RLS processing but the data set
is in an RLS “Lost/Retained locks” state.

76(X'4C') Attention message: The interrupt recognition flag (IRF) was detected for a data set opened for
input processing. This indicates that DELETE processing was interrupted. The structure of the
data set is unpredictable; the access method services DIAGNOSE command may be used to
check the data set for structural errors. For a description of the DIAGNOSE command, see
DFSMS/MVS Access Method Services for ICF.

88(X'58') Attention message: A previous extend error has occurred during EOV processing of the data
set. For RLS, reset processing of “delete vol” has received an error.

92(X'5C') Attention message: Inconsistent use of CBUF processing. Sharing options differ between index
and data components.

96(X'60') Attention message: An unusable data set was opened for input.

100(X'64') Attention message: An OPEN found an empty alternate index that is part of an upgrade set.

101(X'65') Attention message: For RLS, the sphere which was opened is in lost locks state. The open was
successful.

102(X'66') Attention message: For RLS, the sphere is in a non-RLS update permitted state. The open was
successful.

103(X'67') Attention message: For RLS, the sphere which was opened is in both a lost locks state and
non-RLS update permitted state. The open is successful.

104(X'68') Attention message: The time stamp of the volume where the data set is stored does not match
the system time stamp in the data set's catalog record. This indicates extent information in the
catalog record may not agree with the extents indicated in the volume's VTOC.

108(X'6C') Attention message: The time stamps of a data component and an index component do not
match. This indicates that either the data or the index has been updated separately from the
other.

110(X'6E') Attention message: JRNAD exit was not specified on the first ACB opened for the data set.
Processing continues without journaling.

116(X'74') Attention message: The data set was not properly closed and either OPEN's implicit verify was
unsuccessful or the user specified that OPEN's implicit verify should not be executed.

A previous VSAM program may have abnormally terminated. Data may be lost if processing
continues. The access method services VERIFY command may be used to cause the data set
to be properly closed. For a description of the VERIFY command, see DFSMS/MVS Access
Method Services for ICF. In a cross-system shared DASD environment, a return code of 116
can have two meanings: (1) the data set was not properly closed, or (2) the data set is opened
for output on another processor.

118(X'76') Attention message: The data set was not properly closed but OPEN's implicit verify was
successfully executed.

128(X'80') DD statement for this access method control block is missing or invalid.

126 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 9 (Page 2 of 5). OPEN Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

132(X'84') One of the following errors occurred:

� Not enough storage was available for work areas.
� The required volume could not be mounted.
� An uncorrectable I/O error occurred while VSAM was reading the job file control block

(JFCB).
� The format-1 DSCB or the catalog cluster record is invalid.
� The user-supplied catalog name does not match the name on the entry.
� The user is not authorized to open the catalog as a catalog.

133(X'85') Delete Volume processing for RESET(MACRF=RST) failed during open. The DDNAME needs to
be freed and re-allocated to the data set.

134(X'86') Invalid UCB address for UCB address conversion.

136(X'88') Not enough virtual storage space is available in your program's address space for work areas,
control blocks, or buffers.

138(X'8A') A 24-bit UCB address is required for Volume Mount but a 31-bit UCB address was passed.

140(X'8C') The catalog indicates this data set has an invalid physical record size.

144(X'90') Uncorrectable I/O error occurred while VSAM reading or writing catalog record.

145(X'91') An uncorrectable error occurred in the VSAM volume data set (VVDS).

148(X'94') No record for the data set to be opened was found in the available catalogs, or an unidentified
error occurred while VSAM was searching the catalog. For the catalog return code, see system
message IDC3009I in OS/390 MVS System Messages, Vol 3 (GDE-IEB).

For HFS files, the requested file does not exist

152(X'98') Authorization checking failed for one of the following reasons:

� The password specified in the access method control block for a specified level of access
does not match the password in the catalog for that level of access.

� RACF denied access. For the catalog return code, see system message IDC3009I in job
output. It is described in OS/390 MVS System Messages, Vol 3 (GDE-IEB).

 Chapter 4. VSAM Macro Return and Reason Codes 127

 Return and Reason Codes

Figure 9 (Page 3 of 5). OPEN Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

160(X'A0') The operands specified in the ACB or GENCB macro are inconsistent either with each other or
with the information in the catalog record.

One of these conditions has been detected:

� For option ACBRST
 – Path processing

– LSR or GSR
� For option ACBICI

– LSR or GSR
– Key-sequenced data set

 – Path processing
– Sequence set with data

 – Replicated index
– Block size not equal to CI size
– Extended format data set

� For option ACBUBF
– LSR or GSR
– ACBCNV not specified

 – ACBKEY specified
 – ACBADR specified

� For option ACBSDS
– LSR or GSR

 – Path processing
 – Upgrade processing

� For option ACBCBIC
– LSR or GSR
– ACBICI not specified

� For option RLS, an invalid option has been specified. See the message for further
information.

� For miscellaneous options
– Buffer space specified but the amount is too small to process the data set
– Volume not mounted
– Trying to open an empty data set for input

� For an HFS file, an invalid option or operand has been specified
– ACBCNV or ACBKEY

 – ACBSKP
 – ACBICI

– LSR, GSR, or RLS
– ACBSTRNO > 1.

164(X'A4') An uncorrectable I/O error occurred while VSAM was reading the volume label.

167(X'A7') For RLS, open or close processing received an abend while processing the request.

168(X'A8') The data set was not available for the type of processing you specified. Or, an attempt was
made to open a reusable data set with the reset option while another user had the data set
open. The data set may have the INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was already opened for
non-CBUF processing. Or, the data set has conflicting CBUF attributes for the data and index
components of the ACB.

| For RLS, an attempt was made to access a data set with NSR/LSR/GSR and the data set is
| currently accessed by RLS, or vice versa. Or, an attempt was made to access the data set with
| NSR/LSR/GSR and the data set is in lost or retained locks state.

For an HFS file, the file has a file type which is not supported (for example, directories are not
supported).

128 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 9 (Page 4 of 5). OPEN Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

169(X'A9') For RLS, an attempt was made to access an ACB for RLS processing on a previous release of
DFSMS/MVS which does not have RLS function.

170(X'AA') For RLS, an ACB specified a SUBSYSNM name, which is already registered to a previous
server instance.

171(X'AB') For RLS, required CF cache is unavailable from this system.

172(X'AC') For RLS, CF Cache structure failed.

173(X'AD') For RLS, required CF cache structure is in a quiescing or quiesced state.

174(X'AE') For RLS, SUBSYSNM was not specified in the ACB and an attempt was made to open a data
set for output to a recoverable sphere.

175(X'AF') For RLS, locks have been lost. This is an attempt by a new sharing SUBSYSNM to access a
data set for which not all recovery has completed. The open is not successful.

177(X'B1') For RLS, the open is rejected and the sphere is marked VSAM-quiesced.

178(X'B2') For RLS, the open is rejected. The sphere is VSAM-quiescing and this is an attempt by a new
application.

179(X'B3') For RLS, the open is rejected. The sphere is VSAM-quiescing in preparation for a data set copy.

180(X'B4') A VSAM catalog specified in JCL either does not exist or is not open, and no record for the data
set to be opened was found in any other catalog.

181(X'B5') For RLS, the DISP specified is not consistent with DISP specified by another application that
has opened this data set for RLS access. Either this application is requesting DISP=SHR while
another application holds DISP=OLD or vice-versa.

182(X'B6') For RLS, the SMSVSAM server is not available.

183(X'B7') For RLS open, invalid backup while open (BWO) flags in the catalog.

184(X'B8') An uncorrectable I/O error occurred while VSAM was completing an I/O request.

188(X'BC') The data set indicated by the access method control block is not of the type that may be
specified by an access method control block.

189(X'BC') The Exit List (EXLST) is invalid because the length is incorrect.

190(X'BE') An invalid hi-allocated RBA was found in the catalog entry for this data set. The catalog entry is
bad and will have to be restored.

192(X'C0') An unusable data set was opened for output.

193(X'C1') The interrupt recognition flag (IRF) was detected for a data set opened for output processing.
This indicates that DELETE processing was interrupted. The structure of the data set is
unpredictable. The access method services DIAGNOSE command may be used to check it for
structural errors. For a description of the DIAGNOSE command, see DFSMS/MVS Access
Method Services for ICF .

194(X'C2') An open of the data component of a compressed format key-sequenced data set is not allowed.
For RLS, an attempt was made to open an AIX cluster or an individual component of a KSDS
data set. KSDS components cannot be opened for RLS processing.

195(X'C3') For RLS, the SMS Storage Class does not specify a CF (coupling facility) CACHESET name.

196(X'C4') Access to data was requested via an empty path.

For RLS:

� Access to data was requested through an empty path.

� Attempt to access a VSAM data set for RLS processing via an Alternate Index which is not
part of the Upgrade Set.

197(X'C5') Catalog indicated RLS recovery required but user's ACB did not specify recovery processing.

 Chapter 4. VSAM Macro Return and Reason Codes 129

 Return and Reason Codes

Figure 9 (Page 5 of 5). OPEN Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

198(X'C6') For RLS, an open is rejected because a volume quiesce is in progress or a required volume is
marked as “quiesced.”

200(X'C8') The format-4 DSCB indicates that the volume is unusable.

201(X'C9') For RLS, the sphere is not currently assigned to a CF cache and there are no CF caches
available from this system which could be assigned to the sphere.

202(X'CA') For RLS, SUBSYSNM violation. The SUBSYSNM name specified is different from the
subsystem name registered for this address space.

203(X'CB') For RLS, JRNAD Exit requested for ACB being opened for RLS processing.

204(X'CC') The ACB MACRF specification is GSR and caller is not operating in protect key 0 to 7. Or, ACB
MACRF specification is CBIC (Control Blocks in Common) and caller is not operating in
supervisor state with protect key 0 to 7.

205(X'CD') The ACBCATX option or VSAM volume data set open was specified and the calling program
was not authorized.

206(X'CE') For RLS, the LOG parameter associated with the base cluster is undefined.

207(X'CF') RLS SUBSYSNM name contains invalid characters.

208(X'D0') System logic error.

209(X'D1') RLS open internal logic error detected.

210(X'D2') RLS open requested for non-SMS managed data set.

212(X'D4') The ACB MACRF specification is GSR or LSR and the data set requires load mode processing.

216(X'D8') The ACB MACRF specification is GSR or LSR and the key length of the data set exceeds the
maximum key length specified in BLDVRP.

220(X'DC') The ACB MACRF specification is GSR or LSR and the data set's control interval size exceeds
the size of the largest buffer specified in BLDVRP.

224(X'E0') Improved control interval processing is specified and the data set requires load mode
processing.

228(X'E4') The ACB MACRF specification is GSR or LSR and the VSAM shared resource table (VSRT)
does not exist (no buffer pool is available).

229(X'E5') OPEN failed because a BLDVRP or DLVRP is already in progress. A retry of the OPEN is
suggested.

231(X'E7') OPEN failed because the maximum number of VSAM control blocks has been exceeded.

232(X'E8') Reset was specified for a non-reusable data set and the data set is not empty.

236(X'EC') System logic error.

240(X'F0') Format-4 DSCB and volume timestamp verification failed during volume mount processing for
output processing.

244(X'F4') The volume containing the catalog recovery area was neither mounted nor verified for output
processing.

245(X'F5') An attempt was made to open a compressed format data set without sufficient hardware,
ESCON channels and concurrent copy capable control units, or a compressed format device
was required.

246(X'F6') The compression management services open or close function failed.

247(X'F7') An error occurred while retrieving the dictionary token from the extended format cell.

| 250(X'FA')| DSAB match not found.

130 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

VSAM also writes a message to the operator console and the programmer's listing
further explaining the error. For a listing of VSAM messages, see OS/390 MVS
System Messages, Vol 4 (IEC-IFD).

CLOSE Return and Reason Codes
When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all VSAM data sets were closed successfully:

Figure 10. Return Codes in Register 15 After CLOSE

Return Code Meaning

0(X'0') All data sets were closed successfully.

4(X'4') At least one data set (VSAM or non-VSAM) was not closed successfully.

If register 15 contains 4, use SHOWCB to display the ERROR field in each access
method control block to determine if a VSAM data set was not closed successfully
and the reason it was not. See “SHOWCB—Display Fields of an Access Method
Control Block” on page 101. Figure 11 gives the reason codes the ERROR field
may contain following close processing.

Figure 11. CLOSE Reason Codes in the ACBERFLG Field of the ACB

Reason Code Meaning

0(X'0') No error (set when register 15 contains 0).

4(X'4') The data set indicated by the access method control block is already closed.

129(X'81') CLOSE TYPE=T was issued for a VSAM data set that is not open for VSAM processing.

132(X'84') An uncorrectable I/O error occurred while VSAM was reading the job file control block (JFCB).

136(X'88') Not enough virtual storage was available in your program's address space for a work area for
close processing.

144(X'90') An uncorrectable I/O error occurred while VSAM was reading or writing a catalog record.

145(X'91') An uncorrectable error occurred in the VSAM volume data set (VVDS).

148(X'94') An unidentified error occurred while VSAM was searching the catalog.

For an HFS file, an unidentified error occurred.

167(X'A7') For RLS, abend occurred during open or close processing.

170(X'AA') For RLS, the required CF Cache is unavailable from this system.

184(X'B8') An uncorrectable I/O error occurred while VSAM was completing outstanding I/O requests. For
an HFS file, an error occurred while flushing output data or when disconnecting from the file.

185(X'B9') LSR/GSR - Error in WRTBFR: I/O for data set not quiesced before WRTBFR TYPE=DS during
close processing.

188(X'BC') The data set indicated by the ACB is not the type that may be specified by an ACB.

For RLS, an invalid ACB address is specified for close processing.

236(X'EC') A permanent destaging error occurred in MSS (RELINQUISH). With temporary close processing,
a destaging error or a staging error (ACQUIRE) occurred.

246(X'F6') A call to compression management services (CMS) failed.

 Chapter 4. VSAM Macro Return and Reason Codes 131

 Return and Reason Codes

In addition to these reason codes, VSAM writes a message to the operator's
console and the programmer's listing further explaining the error. For a listing of
these messages, see OS/390 MVS System Messages, Vol 4 (IEC-IFD).

OPEN/CLOSE Message Area for Multiple Reason or Attention
Messages

This section does not apply to RLS processing. The MAREA and MLEN parameters
are ignored by RLS processing.

During the execution of a non-RLS open or close, more than one error condition
may be detected. However, the ACB error flag field can accommodate only one
attention or error condition. To receive multiple error or attention conditions, specify
an optional message area. VSAM uses this optional message area to accumulate
error messages from an open or close.

The system can supply multiple messages if you specify nonzero values in the
MAREA and MLEN parameters of the ACB. If MAREA or MLEN is either not
specified or zero, no error or attention information is stored in the message area.
The ACB error flag field is the only indication of error or attention conditions. If
MAREA and MLEN are specified and the message area is too small to
accommodate all messages, the last incoming messages are dropped. However,
you will receive an indication of the number of attention conditions and messages
that occurred.

The message area provided by VSAM is divided into two parts:

� The message area header
� The message list.

Message Area Header
The message area header contains statistical, pointer, and general information. Its
contents are unrelated to the individual messages. The format of the message area
header is shown in Figure 12 on page 133.

132 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

.

Byte 0 Flag Byte

bit 0=1 Full message area header has been stored.
bit 0=0 Only flag byte of message area header has been stored. (Implies that no

messages have been stored.)
bits 1-7 Reserved (set to binary zeros).

Bytes 1-2 Length of message area header (includes flag byte and length byte).

Byte 3 Request type code:

X'01' OPEN
X'02' CLOSE without TYPE=T
X'03' CLOSE TYPE=T

Bytes 4-11 ddname used for ACB.

Bytes 12-13 Total number of messages (error or attention conditions) issued by open or
close processing.

Bytes 14-15 Number of messages stored by open or close processing in message area.

Bytes 16-19 Address of message list of first message in message area.

Figure 12. Format of the Message Area Header

The function of the ACB error flag field remains unchanged whether this optional
message area is specified. At the end of an open or close, this field contains either
X'00' (indicating no error or attention condition occurred) or a nonzero code. The
ACB error flag byte contains the nonzero open or close reason code corresponding
to the error or attention condition that occurred with the highest severity.

Message area header information is stored only when an attention or error
condition is detected. (That is, when the ACB error flag field is set to a nonzero
value.) The header information consists of the flag byte only if the message area
length (MLEN) is not large enough to accommodate the full message area header.
In this case, bit 0 of the flag byte is zero.

Before accessing the message header information (bytes 1 through 19), test byte 0
to see if more information is stored. If MLEN=0, no header information is stored,
not even the flag byte. If the full message area header is stored, bytes 1 and 2
contain its actual length. Your program should be sensitive to this length when
interrogating the message area header.

 Message List
The message list contains individual messages that correspond to detected
attention or error conditions. Bytes 16 through 19 of the message area header
contain the location of the message list within the message area. If the message
area header is not stored completely, (bit 0 of byte 0 is 0), the location of the
message list is not provided.

In the message list, individual messages are stored as a contiguous string of
variable-length records. Bytes 14 and 15 of the message area header contain the
number of messages stored. Check for a nonzero stored message count before
investigating the message list. However, messages may not be stored even if the
ACB error flag byte contains a nonzero value and the message area header bit 0 of
byte 0 is 1. For example, no messages will be stored if MLEN is not large enough
to allow at least one message to be stored.

 Chapter 4. VSAM Macro Return and Reason Codes 133

 Return and Reason Codes

The format of the individual messages is shown in Figure 13 on page 134.

.

Bytes 0-1 Length of message (including these 2 bytes).

Byte 2 ACB error flag code corresponding to the error or attention condition
represented by this message.

Byte 3 Function type code:

Specifies which dsname, if any, is stored in bytes 4 through 47 of the
message:

.

X'00' No dsname stored. Bytes 4-47 of the message contain binary zeros. The
error attention condition is not clearly related to a component, or VSAM was
unable to identify or obtain the cluster name of the component in error. This
code is used only if the ddname of the ACB does not identify a valid DD
statement, or VSAM was unable to obtain the dsname contained in the DD
statement.

X'01' dsname contained in DD statement is stored. The error or attention
condition is not clearly related to a component, or VSAM was unable to
identify or obtain the cluster name of the component in error.

X'02' dsname (cluster name) of base cluster stored. Error occurred during an
open or close for base cluster.

X'03' dsname (cluster name) of alternate index component stored. Error occurred
during open or close processing for alternate index component.

X'04' dsname (cluster name) of member of upgrade set stored. Error occurred
during open or close for this member of the upgrade set.

Bytes 4-47 Binary zeros (function type code=X'00') or a dsname as described
by byte 3.

Figure 13. Format of Individual Messages in Message List

Bytes 0 and 1 of each message specify its actual length. Because messages vary
in length, you need to know the actual length of each message to do your
processing.

Byte 2 of the message contains the ACB error flag code; it does not indicate a
dsname has been stored. Depending on the condition that raised the ACB error flag
code, either no dsname or different types of dsnames (DD, base cluster, alternate
index, or upgrade set member) may be stored. (The same condition may be
detected both when opening the base cluster and when opening a member of the
upgrade set. For example, an I/O error may occur when trying to obtain the
dsname for the component in error.)

Bytes 4 through 47 of the message can contain a dsname, but not specify its type.

Only byte 3 of the message specifies if a dsname was stored and, if so, its type.

134 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Control Block Manipulation Macro Return and Reason Codes
The GENCB, MODCB, SHOWCB, and TESTCB macros can be executed (unlike
the ACB, EXLST, and RPL macros). They cause control to be given to VSAM to
perform the indicated task. VSAM indicates if the task was completed by a return
code in register 15:

Figure 14. Return Codes in Register 15 After Control Block Manipulation Macros

Return Code Meaning

0(X'0') Task completed.

4(X'4') Task not completed.

8(X'8') An attempt was made to use the execute form of a macro to modify a keyword that is not in the
parameter list. (See “Use of List, Execute, and Generate Forms of VSAM Macros” on page 8.)

You can cause an error if you specify the operands incorrectly.

When register 15 contains 4, register 0 contains a reason code indicating why
VSAM could not perform the task. If you construct the parameter list, register 0 can
contain reason codes 1, 2, 3, 10, 14, 20, and 21.

Figure 15 describes each reason code returned in register 0.

Figure 15 (Page 1 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned in Register 0

Reason
Code

Applicable
Macros 1 Reason VSAM Could Not Perform the Task

1(X'1') G,M,S,T The request type (generate, modify, show, or test) is invalid.

2(X'2') G,M,S,T The block type (access method control block, exit list, or request parameter
list) is invalid.

3(X'3') G,M,S,T One of the keyword codes in the parameter list is invalid.

4(X'4') M,S,T The block at the address indicated is not of the type you indicated (access
method control block, exit list, or request parameter list).

5(X'5') S,T Access method control block fields were to be shown or tested, but the data
set is not open or it is not a VSAM data set.

6(X'6') S,T Access method control block information about an index was to be shown
or tested, but no index was opened with the data set.

7(X'7') M,S An exit list was to be modified, but the list was not large enough to contain
the new entry. Or, an exit was to be modified or shown but the specified
exit wasn't in the exit list. (With TESTCB, if the specified exit address is not
present, you get an unequal condition when you test for it.)

8(X'8') G There is not enough virtual storage in your program's address space to
generate the access method control blocks, exit lists, or request parameter
lists and no work area outside your address space was specified.

9(X'9') G,S The work area specified was too small for generation or display of the
indicated control block or fields.

10(X'A') G,M With GENCB, exit list control block type was specified and you specified an
exit without giving an address. With MODCB, exit list control block type was
specified and you specified an exit without giving an address. In this case,
either active or inactive must be specified, but load cannot be specified.

 Chapter 4. VSAM Macro Return and Reason Codes 135

 Return and Reason Codes

Figure 15 (Page 2 of 2). GENCB, MODCB, SHOWCB, and TESTCB Reason Codes Returned in Register 0

Reason
Code

Applicable
Macros 1 Reason VSAM Could Not Perform the Task

11(X'B') M Either (1) a request parameter list was to be modified, but the request
parameter list defines an asynchronous request that is active (that is, no
CHECK or ENDREQ has been issued on the request) and thus cannot be
modified; or (2) MODCB is already issued for the control block, but has not
yet completed.

12(X'C') M An access method control block was to be modified, but the data set
identified by the access method control block is open and cannot be
modified.

13(X'D') M An exit list was to be modified, and you attempted to activate an exit
without providing a new exit address. Because the indicated exit list does
not contain an address for that exit, your request cannot be honored.

14(X'E') G,M,T One of the option codes (for MACRF, ATRB, or OPTCD) has an invalid
combination of option codes specified (for example, OPTCD=(ADR,SKP)).

15(X'F') G,S The work area specified did not begin on a fullword boundary.

16(X'10') G,M,S,T A VTAM keyword or subparameter was specified but the AM=VTAM
parameter was not specified. AM=VTAM must be specified to process a
VTAM version of the control block.

19(X'13') M,S,T A keyword was specified that refers to a field beyond the length of the
control block located at the indicated address. (For example, a VTAM
keyword is specified, but the control block it points to is a shorter,
non-VTAM block.)

20(X'14') S Keywords were specified which apply only if MACRF includes LSR or GSR.

21(X'15') S,T The block to be displayed or tested does not exist because the data set is a
dummy data set.

22(X'16') S AM=VTAM was specified and the RPL FIELDS parameter conflicts with the
RPLNIB bit status. Either RPLFIELDS=NIB was specified and the RPLNIB
was off, or RPL FIELDS=ARG was specified and the RPLNIB bit was on.

23(X'17') G The value specified in the work area length parameter exceeds the 65,535
byte limit.

24(X'18') S,T The SMSVSAM server is not available.

25(X'19') S LOKEY is not supported for RLS.

26(X'1A') S,T This request was issued against an ACB open to a different instance of the
SMSVSAM server. The OPEN is no longer valid.

27(X'1A') G,M,S,T This request was issued in AR ASC mode, home ASC mode. Or the RLS
address space had to be accessed and the request was issued in
secondary ASC mode.

Note:

1. G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

136 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Record Management Return and Reason Codes
The following record management macros give return codes and reason codes in
the feedback area of the RPL: GET, PUT, POINT, ERASE, VERIFY, CHECK,
ENDREQ, GETIX, PUTIX, WRKBFR, SCHBFR, VERIFY, VERIFY REFRESH, and
WRTBFR.

The feedback word in the RPL consists of 4 bytes:

Byte Description

0 Problem determination function (PDF) code. This code is used to
locate the point in VSAM record management where a logical error
condition is recognized. A description of the returned PDF code is
located in the IDARMRCD macro.

1 RPL return code. This code is returned in register 15.

2 Component code. This code specifies the component being
processed when the error occurred.

3 Reason code. This code, when paired with the return code in byte
2, specifies the reason for either a successful completion or an
error.

Bytes 2 through 4 make up the RPL feedback area. An explanation of the codes
that appear in these three bytes follows.

Bytes 3 and 4 make up the RPL condition code. An explanation of this code also
follows.

The field name of each byte appears within parentheses in the following figure.

RPL Feedback Word (4 bytes)
|───|

RPL Feedback Area (3 bytes)
 │──│

RPL Condition Code (2 bytes)
 │──────────────────────────────│
┌────────────┬─────────────┬────────────────┬─────────────┐
│ │ │ │ │
│ PDF Code │ Return Code │ Component Code │ Reason Code │
│ (RPLFUNCD) │ (RPLRTNCD) │ (RPLCMPON) │ (RPLERRCD) │
│ │ │ │ │
└────────────┴─────────────┴────────────────┴─────────────┘

Return Codes (RPLRTNCD)
The meaning of the return code depends on whether the processing is
asynchronous or synchronous.

 Chapter 4. VSAM Macro Return and Reason Codes 137

 Return and Reason Codes

 Asynchronous Request
After you issue an asynchronous request for access to a data set, VSAM sets a
return code in register 15 to indicate whether the request was accepted. Figure 16
describes each return code returned in register 15.

If the asynchronous request was accepted, issue a CHECK after doing your other
processing. This way VSAM can indicate in register 15 whether the request was
completed successfully, set a return code in the feedback area, and exit to any
appropriate exit routine.

If the request was not accepted, you should either wait until the other request is
complete (for example, by issuing a CHECK on the request parameter list) or
terminate the other request (using ENDREQ). Then you can reissue the rejected
request.

Figure 16. Return Code in Register 15 Following Asynchronous Request

Return Code
(RPLRTNCD) Meaning

0(X'0') Request was accepted.

4(X'4') Request was not accepted because the request parameter list
indicated by the request (RPL=address) was active for another
request.

 Synchronous Request
After a synchronous request, or a CHECK or ENDREQ macro, the return code in
register 15 indicates if the request completed successfully. Figure 17 describes
each return code returned in register 15.

Figure 17. Return Code in Register 15 Following Synchronous Request

Return Code
(RPLRTNCD) Meaning

0(X'0') Request completed successfully.

4(X'4') Request was not accepted because the request parameter list
indicated by the request (RPL=address) was active for another
request.

8(X'8') Logical error; specific error is indicated in the RPL feedback
area.

12(X'C') Physical error; specific error is indicated in the RPL feedback
area.

Component Codes (RPLCMPON)
When a logical or physical error occurs, VSAM uses the RPL component code field
to identify the component being processed when the error occurred. VSAM also
indicates if the alternate index upgrade set is correct following the request that
failed. The component code can be displayed and tested by using the SHOWCB
and TESTCB macros. The codes and their meanings are given in Figure 18.

138 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Note: The component code (byte 3 of the RPL feedback word) and the reason
code (byte 4 of the RPL feedback word) make up the two-byte RPL
condition code.

Figure 18. Component Codes Provided in the RPL

Component Code
(RPLCMPON)

What Was Being
Processed

Upgrade Set Status

0(X'0') Base cluster Correct

1(X'1') Base cluster May be incorrect

2(X'2') Alternate index Correct

3(X'3') Alternate index May be incorrect

4(X'4') Upgrade set Correct

5(X'5') Upgrade set May be incorrect

Reason Codes (RPLERRCD)
The 0, 8, and 12 return codes in register 15 are paired with reason codes in the
RPL feedback area.

The reason codes in the RPL feedback area can be examined with the SHOWCB
or TESTCB macro. Code your examination routine immediately following the
request macro. Logical errors, physical errors, and reaching the end of the data set
all cause VSAM to exit to the appropriate exit routine, if one is provided.

Coordinate error checking in your program with your error-analysis exit routines. If
they terminate the program, for instance, you do not need to code a check for an
error after a request. But, if a routine returns to VSAM to continue processing, you
should check register 15 after a request to determine if there was an error. Even
when an error is handled by an exit routine, you may want to modify processing
because of the error.

Reason Code (Successful Request)
When the request is completed, register 15 indicates the status of the request. A
reason code of 0 indicates successful completion. Figure 19 lists nonzero reason
codes and their meanings.

Figure 19 (Page 1 of 2). Successful Completion Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=0(X '0') Meaning

0(X'0') Request completed successfully.

4(X'4') Request completed successfully. For retrieval, VSAM mounted another volume
to locate the record. For storage, VSAM allocated additional space or mounted
another volume.

8(X'8') For GET requests, indicates a duplicate alternate key exists (applies only when
accessing a data set using an alternate index that allows non-unique keys). For
PUT requests, indicates that a duplicate key was created in an alternate index
with the non-unique attribute.

12(X'C') All buffers, except for the buffer just obtained, may have been modified and may
need to be written. It is suggested you issue the WRTBFR macro.

 Chapter 4. VSAM Macro Return and Reason Codes 139

 Return and Reason Codes

Figure 19 (Page 2 of 2). Successful Completion Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=0(X '0') Meaning

16(X'10') The sequence-set record does not have enough space to allow it to address all
the control intervals in the control area that should contain the record. The
record was written into a new control area.

20(X'14') Mass Storage System macros CNVTAD, MNTACQ, and ACQRANGE are no
longer supported.

24(X'18') Buffer found but not modified; no buffer writes performed.

28(X'1C') Control interval split indicator was detected during an addressed GET NUP
request.

32(X'20') Request deferred for a resource held by the terminated RPL is asynchronous
and cannot be restarted.

A MRKBFR request is invalid because no candidate buffers can be found.

For RLS, there are no locks to retain since no update locks exist for this CICS
address space, CICS transaction, or SPHERE.

36(X'24') Possible data set error condition was detected.

40(X'28') Possible data set error condition was detected.

43(X'2B') EOV called to retrieve or update the dictionary token in the extended format cell.

44(X'2C') EOV called to update catalog statistics.

Reason Code (Logical Errors)
If a logical error occurs and you have no LERAD routine (or the LERAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. (See DFSMS/MVS Using Data Sets for information on the LERAD
routine.)

The return code in register 15 indicates a logical error (8), and the RPL feedback
area contains a reason code identifying the error. Register 1 points to the RPL.

Some VSAM reason codes for logical errors, used for diagnosis purposes, are
shown in DFSMS/MVS DFSMSdfp Diagnosis Reference.

Figure 20 lists the feedback area reason codes and their meanings. Some of these
reason codes in the figure use the term LUWID in their meaning column. For a
CICS application, the LUWID is a CICS transaction identifier. For a batch job, the
LUWID is a unique value assigned by RLS to the address space.

Figure 20 (Page 1 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

4(X'4') End of data set found (during sequential or skip sequential retrieval), or the
search argument is greater than the high key of the data set. Either no EODAD
routine is provided, or one is provided, returned to VSAM, and the processing
program issued another GET. (See DFSMS/MVS Using Data Sets for information
on the EODAD routine.)

8(X'8') You attempted to store a record with a duplicate key, or there is a duplicate
record for an alternate index with the unique key option.

140 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 20 (Page 2 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

12(X'C') An attempt was made to perform sequential or skip-sequential processing against
a record whose key/record number does not follow the proper
ascending/descending sequential order. The error may occur under any one of
the following processing conditions:

� For a key-sequenced data set
– PUT sequential or skip-sequential processing
– GET sequential, single string input only
– GET skip-sequential processing and the previous request is not a POINT

� For a relative record data set
– GET skip-sequential processing
– PUT skip-sequential processing

16(X'10') Record not found, or the RBA is not found in the buffer pool. (If multiple RPL
requests are issued for alternate indexes, getting return code 16(X'10') might
mean a temporary situation where processing has not been completed on either
the base cluster or the associated alternate indexes.)

20(X'14') Control interval exclusive use conflict. The address of the RPL which owns the
resource is placed in the first word in the RPL error message area.

For RLS, another RPL used by this LUWID holds an EXCL lock on this record.
This code means that there was an intra-LUWID exclusive control conflict. If an
RPL message area of sufficient length is specified, the following information is
returned.

Offset Length Description

ð 4 Address of RPL in exclusive control
4 1 Flag Byte: - Not used for RLS

X'ðð'--neither RPL doing a control
 area split

X'ð1'--current RPL doing a control
 area split

X'ð2'--other RPL doing a control
 area split

If this request's RPL specifies a MSGAREA of length 4 bytes or greater, the
address of an RPL whose lock on this record caused this request to be rejected
is returned in the first 4 bytes of MSGAREA. The application may choose to issue
an ENDREQ on that RPL and then re-issue this POINT, GET NUP, or GET UPD
request.

21(X'15') For RLS, another LUWID holds an EXCL lock on this record. The combination of
one or more LUWIDs waiting for other record locks held by this LUWID and this
LUWID waiting for this record lock produced a deadlock.

If an RPL message area of sufficient length is specified, and the requestor is a
commit protocol application (for example, CICS), the following information is
returned.

Offset Length Description

ð 4 Address of problem determination area
You are required to free this area.

 Chapter 4. VSAM Macro Return and Reason Codes 141

 Return and Reason Codes

Figure 20 (Page 3 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

22(X'16') For RLS, another LUWID holds an EXCL lock on this record. This request waited
for the record lock until the timeout interval expired.

If an RPL message area of sufficient length is specified, and the requestor is a
commit protocol application (for example, CICS), the following information is
returned.

Offset Length Description

ð 4 Address of problem determination area.
You are required to free this area.

24(X'18') Record resides on a volume that cannot be mounted.

For RLS, another LUWID holds a retained lock on this record.

If an RPL message area of sufficient length is specified, the following information
is returned.

Offset Length Description

ð 4 Address of problem determination area.
You are required to free this area.

For non-RLS, message area information is not returned.

28(X'1C') Data set cannot be extended because VSAM cannot allocate additional direct
access storage space. Either there is not enough space left to make the
secondary allocation request or you attempted to increase the size of a data set
while processing with SHAREOPTIONS=4 and DISP=SHR.

For RLS, the error can occur for a GET request when the GET request sees the
same error has been issued for a preceding PUT request on the same ACB.

32(X'20') You specified an RBA that does not give the address of any data record in the
data set.

36(X'24') Key ranges were specified for the data set when it was defined, but no range
was specified that includes the record to be inserted.

40(X'28') Insufficient virtual storage in your address space to complete the request.

44(X'2C') Work area not large enough for the data record or for the buffer (GET with
OPTCD=MVE).

48(X'30') Invalid options, data set attributes, or processing conditions:

 � CNV processing
� The specified RPL is asynchronous

 � Chained RPLs
 � Path processing
� Shared resources (LSR/GSR) indeterminate buffer status

 � Load mode
� Fixed-length relative record data set
� Data set contains spanned records
� User not in key 0 and supervisor state
� End-of-volume in process (secondary allocation).

52(X'34') Invalid options, data set attributes, or processing conditions specified by
MVS/DFP. (See X'34' for a list of the invalid options).

142 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 20 (Page 4 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

56(X'38') Error from catalog update at the beginning of a CI/CA split for backup while open.

For RLS, invalid reuse of an RLS RPL

This RPL has position established for RLS access to a data set. The application
has changed either the ACB or LUWID or both. RLS does NOT permit this form
of RPL reuse. This error does NOT change or lose the string's position. Before
changing the ACB or LUWID, the application must issue an ENDREQ on the RPL
to release the string's position.

RPL reuse violation. The RPL request had positioning information from a
previous request and the ACB and or LUWID specified in the RPL did not match
that of the prior request.

64(X'40') There is insufficient storage available to dynamically add another string. Or, the
maximum number of place holders that may be allocated to the request has been
allocated, and a place holder is not available.

For RLS, the limit of 1024 outstanding requests for this ACB has been exceeded.

68(X'44') You attempted to use a type of processing (output or control interval processing)
that was not specified when the data set was opened.

72(X'48') You made a keyed request for access to an entry-sequenced data set. Or, you
issued a GETIX or PUTIX to an entry-sequenced data set or fixed-length RRDS.

For RLS, you issued a GETIX or PUTIX. GETIX and PUTIX are not supported by
RLS

76(X'4C') You issued an addressed or control interval PUT to add to a key-sequenced data
set or variable-length RRDS. Or, you issued a control interval PUT to a
fixed-length RRDS.

80(X'50') You issued an ERASE request in one of the following situations:

� For access to an entry-sequenced data set
� For access to an entry-sequenced data set via a path.
� With control interval access.

84(X'54') You specified OPTCD=LOC in one of the following situations:

� For a PUT request.
� In the previous request parameter list in a chain of request parameter lists.
� For UBF processing.

88(X'58') You issued a sequential GET request without being positioned to it. Or, you
changed from addressed access to keyed access without being positioned for
keyed-sequential retrieval. There was no positioning established for sequential
PUT insert for a RRDS. Or, you attempted an illegal switch between forward and
backward processing.

92(X'5C') You issued a PUT for update or an ERASE without a previous GET for update,
or a PUTIX without a previous GETIX.

96(X'60') You attempted to change the prime key or key of reference while making an
update or for RLS the PUT NUP request attempted to change the key specified
by a prior IDALKADD.

100(X'64') You attempted to change the length of a record while making an addressed
update.

 Chapter 4. VSAM Macro Return and Reason Codes 143

 Return and Reason Codes

Figure 20 (Page 5 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

104(X'68') The RPL options are either invalid or conflicting in one of the following ways:

� SKP was specified and either KEY was not specified or BWD was specified.
� BWD was specified for CNV processing.
� FWD and LRD were specified.
� Neither ADR, CNV, nor KEY was specified in the RPL.
� BFRNO is invalid (less than 1 or greater than the number of buffers in the

pool).
� WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID was

greater than 31 or the shared resource option was not specified.
� ICI processing was specified, but a request other than a GET or a PUT was

issued.
� MRKBFR MARK=OUT or MARK=RLS was issued but the RPL did not have a

data buffer associated with it.
� The RPL specified WAITX, but the ACB did not specify LSR or GSR.
� CNV processing is not allowed for compressed data sets. Only VERIFY and

VERIFY REFRESH are allowed.
� VERIFY was specified for an HFS file.
� BWD or UPD was specified for an HFS file.

| � DIR was specified for an HFS file that is a FIFO or character special file.

108(X'6C') RECLEN specified was larger than the maximum allowed, equal to 0, or smaller
than the sum of the length and the displacement of the key field. RECLEN was
not equal to record (slot) size specified for a fixed-length RRDS. The automatic
increase in the record size of an upgrade index for the base cluster may cause
an incorrect RECLEN specification.

112(X'70') KEYLEN specified was too large or equal to 0.

116(X'74') During initial data set loading (that is, when records are being stored in the data
set the first time it is opened), GET, POINT, ERASE, direct PUT, skip-sequential
PUT, or PUT with OPTCD=UPD is not allowed. For initial loading of a fixed
length RRDS, the request was other than a PUT insert.

120(X'78') Request was operating under an incorrect TCB. For example, an end-of-volume
call or a GETMAIN macro was necessary to complete the request, but the
request was issued from a task other than the one that opened the data set. The
request can be resubmitted from the correct task if the new request reestablishes
positioning.

124(X'7C') A request was cancelled for a user JRNAD exit.

128(X'80') A loop exists in the index horizontal pointer chain during index search processing.

132(X'84') An attempt was made in locate mode to retrieve a spanned record.

136(X'88') You attempted an addressed GET of a spanned record in a key-sequenced data
set.

140(X'8C') The spanned record segment update number is inconsistent.

144 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 20 (Page 6 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

144(X'90') Invalid pointer (no associated base record) in an alternate index.

If multiple RPL requests are issued for alternate indexes, getting return code
144(X'90') might mean a temporary situation where processing has not been
completed on either the base cluster or the associated alternate indexes.

For example, you have issued multiple RPL requests including erase requests to
the path or base cluster, and got a return code of X'90'. This might be a
temporary situation where the base cluster has been erased, but the associated
alternate index has not been erased. If you provide a message area using the
MSGAREA parameter of the RPL macro, VSAM returns the address of an RPL
doing the erase when the return code X'90' was set.

148(X'94') The maximum number of pointers in the alternate index has been exceeded.

152(X'98') Not enough buffers are available to process your request (shared resources
only).

156(X'9C') Invalid control interval detected during keyed processing, an addressed GET
UPD request failed because control interval flag was on, or an invalid control
interval or index record was detected. The RPL contains the invalid control
interval's RBA.

160(X'A0') One or more candidates were found that have a modified buffer marked to be
written. The buffer was left in write status with valid contents. With this condition,
it is possible to have other buffers invalidated or found under exclusive control.

168(X'A8') For RLS, the pointer in the RPL to the record is zero.

180(X'B4') For RLS, an invalid request for a non recoverable data set.

184(X'B8') For RLS, an ABEND condition occurred while processing this VSAM request.
The VSAM RLS FRR (Functional Recovery Routine) intercepted the failure and
failed the VSAM request with this reason code.

185(X'B9') For RLS, the user task was cancelled while the request was being processed.

186(X'BA') End of volume initialization failed when data set tried to extend.

187(X'BB') For RLS, an error occurred with partial EOV processing.

188(X'BC') For RLS, the sphere is in lost locks state. A record management request was
issued by this SUBSYSNM, but these requests are not allowed until the sphere is
out of lost locks state.

192(X'C0') Invalid relative record number.

196(X'C4') You issued an addressed request to a fixed- or variable-length RRDS.

200(X'C8') You attempted addressed or control interval access through a path.

204(X'CC') PUT insert requests (or for RLS, IDALKADD requests) are not allowed in
backward mode.

208(X'D0') You issued an ENDREQ macro against an RPL that has an outstanding WAIT
against its associated ECB. An ENDREQ was issued from a STAE or ESTAE
routine against an RPL that was started before the abend. No ENDREQ
processing was done.

212(X'D4') During control area split processing, an existing condition prevents the split of the
index record. Index and/or data control interval size may need to be increased.

218(X'DA') Unrecognizable return code.

224(X'E0') MRKBFR OUT was issued for a buffer with invalid contents.

 Chapter 4. VSAM Macro Return and Reason Codes 145

 Return and Reason Codes

Figure 20 (Page 7 of 7). Logical Error Reason Codes in the Feedback Area of the Request Parameter List

Reason Code (RPLERRCD)
When Register 15=8(X '8') Meaning

228(X'E4') Caller in cross-memory mode is not in supervisor state or RPL of caller in SRB or
cross-memory mode does not specify LSR, GSR, or SYN processing. For RLS,
the caller is not in primary ASC mode, or the caller is in SRB mode, or the caller
issued a record management request with an FRR in effect, or the task that
opened the ACB is not in the caller task hierarchy.

229(X'E5') The record length changed during decompression processing.

230(X'E6') The processing environment was changed by the user of the UPAD exit.

232(X'E8') UPAD error; ECB was not posted by user in cross-memory mode.

236(X'EC') Validity check error for SHAREOPTIONS 3 or 4.

237(X'ED') Reserved.

238(X'EE') Reserved.

239(X'EF') Reserved.

240(X'F0') For shared resources, one of the following is being performed: (1)an attempt is
being made to obtain a buffer in exclusive control, (2)a buffer is being invalidated,
or (3)the buffer use chain is changing. For more detailed feedback, reissue the
request.

241(X'F1') Reserved.

242(X'F2') Reserved.

243(X'F3') Reserved.

244(X'F4') Register 14 stack size is not large enough.

245(X'F5') Severe error returned by compression management services during a compress
call. For RLS, additional problem determination is provided in the RPL message
area.

246(X'F6') Severe error returned by compression management services during a
decompress call. For RLS, additional problem determination is provided in the
RPL message area.

248(X'F8') Register 14 return offset went negative.

250(X'FA') No valid dictionary token exists for the data set. VSAM is unable to decompress
the data record.

252(X'FC') Record mode processing is not allowed for a linear data set.

253(X'FD') VERIFY is not a valid function for a linear data set.

254(X'FD') I/O activity on the data set not quiesced before WRTBFR TYPE=DS issued.

When the search argument you supply for a POINT or GET request is greater than
the highest key in the data set, the reason code in the feedback area depends on
the RPL's OPTCD values, as shown in the following table:

Request Type RPLs OPTCD Options
Reason Code When
Register 15=8(X '8')

POINT GEN,KEQ 16(X'10')

POINT GEN,KGE 4(X'4')

POINT FKS,KEQ 16(X'10')

POINT FKS,KGE 4(X'4')

146 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Positioning Following Logical Errors: VSAM is unable to maintain positioning
after every logical error. Whenever positioning is not maintained following an error
request, you must reestablish it before processing resumes.

Positioning may be in one of four states following a POINT or a direct request that
found a logical error:

Yes VSAM is positioned at the position in effect before the request in error was
issued.

No VSAM is not positioned, because no positioning was established at the time
the request in error was issued.

New VSAM is positioned at a new position.

U VSAM is positioned at an unpredictable position.

N/A The reason code is not applicable to the type of processing indicated.

Figure 21 shows which positioning state applies to each reason code listed for
sequential, direct, and skip-sequential processing. “N/A” indicates the reason code
is not applicable to the type of processing indicated.

Request Type RPLs OPTCD Options
Reason Code When
Register 15=8(X '8')

GET GEN,KEQ,DIR 16(X'10')

GET GEN,KGE,DIR 16(X'10')

GET FKS,KEQ,DIR 16(X'10')

GET FKS,KGE,DIR 16(X'10')

GET GEN,KEQ,SKP 16(X'10')

GET GEN,KGE,SKP 4(X'4')

GET FKS,KEQ,SKP 16(X'10')

GET FKS,KGE,SKP 4(X'4')

Figure 21 (Page 1 of 3). Positioning States of Reason Codes Listed for Sequential, Direct,
and Skip-Sequential Processing

Reason Code
(RPLERRCD) When
Register 15=8(8) Sequential Direct Skip-Sequential

4 (X'4') Yes No Yes

8 (X'8')1 Yes No New

12 (X'C') Yes N/A Yes

16 (X'10') No No No

20 (X'14') U No2 No2

21 (X'15') Yes3 New New

22 (X'16') Yes3 New New

24 (X'18') Yes No No

28 (X'1C') Yes No Yes

32 (X'20') No No N/A

 Chapter 4. VSAM Macro Return and Reason Codes 147

 Return and Reason Codes

Figure 21 (Page 2 of 3). Positioning States of Reason Codes Listed for Sequential, Direct,
and Skip-Sequential Processing

Reason Code
(RPLERRCD) When
Register 15=8(8) Sequential Direct Skip-Sequential

36 (X'24') Yes No New

40 (X'28') Yes No No

44 (X'2C') Yes New Yes

48 (X'30') U U U

52 (X'34') U U U

56 (X'38') Yes Yes Yes

64 (X'40') No No No

68 (X'44') Yes Yes Yes

72 (X'48') Yes Yes Yes

76 (X'4C') Yes Yes Yes

84 (X'54') Yes Yes Yes

80 (X'50') Yes Yes Yes

84 (X'54') Yes Yes Yes

88 (X'58') Yes Yes Yes

92 (X'5C') Yes Yes Yes

96 (X'60') Yes Yes Yes

100 (X'64') Yes Yes Yes

104 (X'68') Yes New Yes

108 (X'6C') Yes New Yes

112 (X'70') Yes Yes Yes

116 (X'74') Yes Yes Yes

120 (X'78') Yes No No

124 (X'7C') No No No

128 (X'80') Yes No No

132 (X'84') Yes New Yes

136 (X'88') No No N/A

140 (X'8C') Yes New Yes

144 (X'90') Yes Yes Yes

148 (X'94') Yes Yes Yes

152 (X'98') Yes No No

156 (X'9C') Yes No No

160 (X'A0') N/A No N/A

161 (X'A1') N/A N/A N/A

168 (X'A8') N/A N/A N/A

180 (X'B4') Yes Yes Yes

184 (X'B8') U U U

148 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 21 (Page 3 of 3). Positioning States of Reason Codes Listed for Sequential, Direct,
and Skip-Sequential Processing

Reason Code
(RPLERRCD) When
Register 15=8(8) Sequential Direct Skip-Sequential

186 (X'BA') Yes Yes Yes

192 (X'C0') Yes Yes Yes

196 (X'C4') Yes Yes Yes

200 (X'C8') Yes Yes Yes

204 (X'CC') Yes Yes Yes

208 (X'D0') Yes Yes Yes

212 (X'D4') U U U

224 (X'E0') N/A No N/A

228 (X'E4') No No No

229 (X'E5') New New New

230 (X'E6') Yes Yes Yes

232 (X'E8') No No No

236 (X'EC') No No No

240 (X'F0') Yes Yes Yes

244 (X'F4') U U U

245 (X'F5') New New New

246 (X'F6') New New New

248 (X'F8') U U U

250 (X'FA') New New New

252 (X'FC') No No No

253 (X'FD') No No No

Notes:

1. A subsequent GET SEQ will retrieve the duplicate record. However, a
subsequent GET SKP for the same key will get a sequence error. In a fixed- or
variable-length RRDS, a subsequent PUT SEQ positions to the next slot (whether
the slot is empty or not).

2. PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an RBA that
could not be obtained for exclusive control.

3. For RLS, advanced to next record on next request.

Reason Code (Physical Errors)
If a physical error occurs and you have no SYNAD routine (or the SYNAD exit is
inactive), VSAM returns control to your program following the last executed
instruction. The return code in register 15 indicates a physical error (12). The RPL
feedback area contains a reason code identifying the error. The RPL message area
contains more details about the error. Register 1 points to the request parameter
list. The RBA field in the request parameter list gives the relative byte address of
the control interval in which the physical error occurred. Figure 22 gives the reason
codes in the feedback area and explains what each indicates.

 Chapter 4. VSAM Macro Return and Reason Codes 149

 Return and Reason Codes

Figure 23 shows the format of a physical error message for RLS and non-RLS
processing. The format and some of the contents of the message are purposely
similar to the format and contents of the SYNADAF message, described in
Figure 50 on page 367.

Figure 22. Physical Error Reason Codes in the Feedback Area of the Request Parameter
List

Reason Code
(RPLERRCD) When
Register 15=12(X '0C') Meaning

4(X'4') Read error occurred for a data set.

8(X'8') Read error occurred for an index set.

12(X'C') Read error occurred for a sequence set.

16(X'10') Write error occurred for a data set.

20(X'14') Write error occurred for an index set.

24(X'18') Write error occurred for a sequence set.

36(X'24') For RLS, CF Cache Structure connectivity failure

40(X'28') For RLS, CF Cache Structure failure

44(X'2C') For extended format data sets, the suffix for a physical record
in the CI at the RBA specified in the RPL is invalid.

150 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 23. Physical Error Message Format

MESSAGE FORMAT FOR NON-RLS PROCESSING

Field Bytes Length Description

Message Length 0-1 2 Binary value of 128.
2-3 2 Unused (0)

Message Length-4 4-5 2 Binary value of 124 (provided for compatibility with
SYNADAF Message).

6-7 2 Unused (0)
Address of I/O Buffer 8-11 4 The I/O buffer associated with the data where the error

occurred.
The rest of the message is in printable format
Date 12-16 5 YYDD (year and day)

17 1 Comma (,)
Time 18-25 8 HHMMSSTH (hour, minute, second, tenths and

hundredths of a second.
26 1 Comma (,)

RBA 27-38 12 Relative byte address of the record where the error
occurred.

39 1 Comma (,)
Component Type 40 1 "D"(Data) or "I"(Index)

41 1 Comma (,)
Volume Serial Number 42-47 6 Volume serial number of the volume where the error

occurred.
For HFS files, contains "********"

48 1 Comma (,)
Job Name 49-56 8 Name of the job where error occurred.

57 1 Comma (,)
Step Name 58-65 8 Name of the job step where the error occurred.

66 1 Comma (,)
Unit 67-70 4 The device number where the error occurred.

For HFS files, this field contains "****"
71 1 Comma (,)

Device Type 72-73 2 The type of device where the error occurred. (Always
DA for direct access.)

74 1 Comma (,)
ddname 75-82 8 The ddname of the DD statement defining the data set

where the error occurred.
83 1 Comma (,)

Channel 84-89 6 The channel command that received the error in the
first two bytes, followed by “-OP”
For HFS files, this field contains the request which
resulted in the error.
Either a GET, PUT, CHECK, POINT, or ENDREQ
request.

90 1 Comma (,)

 Chapter 4. VSAM Macro Return and Reason Codes 151

 Return and Reason Codes

Message 91-105 15 Messages are divided according to ECB completion codes:

 X'41' “INCORR LENGTH”
 “UNIT EXCEPTION”
 “PROGRAM CHECK”
 “PROTECTION CHK”
 “CHAN DATA CHK”
 “CHAN CTRL CHK”
 “INTFCE CTRL CHK”
 “CHAINING CHK”
 “UNIT CHECK”
 “SEEK CHECK”

If the type of unit check can be determined, the “UNIT CHECK”
message is replaced by one of the following:
 “CMD REJECT”
 “INT REQ”
 “BUS OUT CK”
 “EQP CHECK”
 “DATA CHECK”
 “OVER RUN”
 “TRACK COND CK”
 “COUNT DATA CHK”
 “TRACK FORMAT”
 “CYLINDER END”
 “NO RECORD FOUND”
 “FILE PROTECT”
 “MISSING A.M.”
 “OVERFL INCP”
 X'48' “PURGED REQUEST”
 X'4A' “I/O PREVENTED”
 X'4F' “R.HA.R0. ERROR”
 “INVALID SUFFIX”

Figure 24. Physical Error Message Format

Figure 25 (Page 1 of 2). Physical Error Message Format

For any other ECB completion code:
“UNKNOWN COND.”
For HFS files, this field contains the service which
encountered an error, in the form “OMVS-nnnnnnnn”
where nnnnnnnn is the name of the service.

106 1 Comma (,)
Physical Direct 107-120 14 BBCCHHR (bin, cyliner, head, and record)
Access Address For HFS files, this field contains the return and

reason code from the failing service in the form
“xxxx-yyyyyyyy” consisting of a 2-byte hexadecimal
return code and a 4-byte hexadecimal reason code.

121 1 Comma (,)
Access Method 122-127 6 “VSAM”

For HFS files, this field contains “VSAM”
MESSAGE FORMAT FOR CF FAILURE WITH RLS PROCESSING
Field Bytes Length Description
Message Length 0-1 2 Binary value of 128

2-3 2 Unused (0)

152 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 25 (Page 2 of 2). Physical Error Message Format

Message Length-4 4-5 2 Binary value of 124 (provided for compatibility with
SYNADAF Message).

6-7 2 Unused (0)
Address of I/O Buffer 8-11 4 The I/O buffer associated with the data where the

error occurred.
The rest of the message is in printable format
Date 12-16 5 YYDD (year and day)

17 1 Comma (,)
Time 18-25 8 HHMMSSTH (hour, minute, second, tenths and

hundredths of a second.
26 1 Comma (,)

RBA 27-38 12 Relative byte address of the record where the error
occurred.

39 1 Comma (,)
Component Type 40 1 “D”(Data) or “I”(Index)

41 1 Comma (,)
Volume Serial 42-47 6 For RLS, this field does not apply and is set to

asterisks.
48 1 Comma (,)

Job Name 49-56 8 Name of the job where the error occurred.
57 1 Comma (,)

Step Name 58-65 8 Name of the job step where the error occurred.
66 1 Comma (,)

Unit 67-70 4 For RLS, this field does not apply and is set to
asterisks.

71 1 Comma (,)
Device Type 72-73 2 For RLS, this field is set to “CS” for CF cache

structure.
74 1 Comma (,)

ddname 75-82 8 The ddname of the DD statement defining the data
set where the error occurred.

83 1 Comma (,)
Channel 84-89 6 For RLS, this field is set to “CFREAD” or “CFWRT”

indicating if the CF operation is a read or write.
90 1 Comma (,)

Message 91-105 15 For RLS, you receive either CF structure failure
message or loss of connectivity message.

“CF STR FAILURE”
“CF CON FAILURE”

106 1 Comma (,)
Physical Direct Access
Address

107-120 14 14-character cache structure name.

121 1 Comma (,)
Access Method 122-127 6 “VSAM”

Return Codes from Macros Used to Share Resources Among Data
Sets

VSAM has a set of macros that allow you to share I/O buffers, I/O related control
blocks, and channel programs among VSAM data sets.

 Chapter 4. VSAM Macro Return and Reason Codes 153

 Return and Reason Codes

BLDVRP Return Codes
VSAM returns a code in register 15 that indicates if the BLDVRP request was
successful. Figure 26 describes these return codes.

Figure 26. Return Codes in Register 15 After BLDVRP Request

Return Code Meaning

0(X'0') VSAM completed the request.

4(X'4') The requested data resource pool or index resource pool already exists in the address space
(LSR) or in the system protect key (GSR).

8(X'8') Insufficient virtual storage space to satisfy request. GETMAIN or ESTAE failed.

12(X'C') Opens have already been issued against the shared buffer pool BLDVRP is building. (Note: It is
the responsibility of the VSAM user to serialize the BLDVRP/DLVRP requests with the open or
close requests. VSAM cannot completely detect the lack of such serialization.)

16(X'10') TYPE=GSR is specified but the program that issued BLDVRP is not in supervisor state with
protection key 0 to 7.

20(X'14') STRNO is less than 1 or greater than 255, or parameters are invalid.

24(X'18') BUFFERS is specified incorrectly. A size or number is invalid.

28(X'1C') Requested resource pool invalid. SHRPOOL value greater than 15 specified.

32(X'20') The resource pool already exists above 16 megabytes and the request was for storage below 16
megabytes. Or, the resource pool already exists below 16 megabytes and the request was for
storage above 16 megabytes.

34(X'22') Another BLDVRP or DLVRP on the same shared pool is in progress.

36(X'24') BLDVRP was issued to build an index resource pool but the required corresponding data
resource pool does not exist.

40(X'28') The size for Hiperspace buffers is specified incorrectly. The buffer size must be a multiple of 4K
with a maximum size of 32K.

44(X'2C') Attention: At least one request for Hiperspace buffers was rejected because of insufficient
expanded storage. The specific buffer subpools rejected may be located by checking for the
BLPBFNHS indicator in the Hiperspace buffer request list. The BLDVRP request was otherwise
successful.

This return code is also valid for jobs indicating RESTART processing.

45(X'2D') Attention: All hiperspace creates have failed because no expanded storage was installed on the
system. BLDVRP processing continued as if no hiperspace buffers were requested. The
BLDVRP request was otherwise successful.

This return code is also valid for jobs indicating RESTART processing.

48(X'30') A buffer size specified for a Hiperspace buffer pool is not equal to any of the buffer sizes
specified for the virtual buffer pool.

DLVRP Return Codes
VSAM returns a code in register 15 that indicates if the DLVRP request was
successful. Figure 27 describes these return codes.

Figure 27 (Page 1 of 2). Return Codes in Register 15 Following DLVRP Request

Return Code Meaning

0(X'0') VSAM completed the request.

154 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Return and Reason Codes

Figure 27 (Page 2 of 2). Return Codes in Register 15 Following DLVRP Request

Return Code Meaning

4(X'4') There is no resource pool to delete.

8(X'8') Insufficient virtual storage space to satisfy request. GETMAIN or ESTAE failed.

12(X'C') There is at least one open data set using the resource pool.

14(X'0D') Another BLDVRP or DLVRP on the same shared pool is in progress.

16(X'10') TYPE=GSR is specified, but the program that issued DLVRP is not in supervisor state with
protection key 0 to 7.

End-of-Volume Return Codes
End-of-volume returns a code in register 15 that indicates if the request was
successful. Figure 28 describes these return codes.

Figure 28. Return Codes in Register 15 Following End-of-Volume

Return Code Meaning

0(X'0') Successful.

4(X'4') The requested volume could not be mounted.

8(X'8') The requested amount of space could not be allocated.

12(X'C') I/O operations were in progress when end-of-volume was requested.

16(X'10') The catalog could not be updated.

SHOWCAT Return Codes
VSAM returns a code in register 15 that indicates whether the SHOWCAT request
was successful. “SHOWCAT—Display the Catalog” on page 93 describes these
return codes.

Figure 29 (Page 1 of 2). SHOWCAT Return Codes

Return Code Meaning

0(X'00') VSAM completed the task.

4(X'04') The area specified in the AREA operand is too small to display all pairs of fields for the
associated objects.

8(X'08') There is insufficient virtual storage to complete the task. (A GETMAIN failed.)

12(X'0C') Either the ACB address is invalid, or the VSAM master catalog does not exist, or it is not open.

16(X'10') The address specified in the AREA operand is outside the partition or address space of the
program that issued SHOWCAT.

20(X'14') The named object or control interval does not exist.

24(X'18') There was an I/O error in gaining access to the catalog.

28(X'1C') The control interval number is invalid.

32(X'20') The catalog record does not describe a C, D, G, I, R, or Y type of object.

36(X'24') The interrelationship among catalog entries is in error. For example, another type.

 Chapter 4. VSAM Macro Return and Reason Codes 155

 Return and Reason Codes

Figure 29 (Page 2 of 2). SHOWCAT Return Codes

Return Code Meaning

40(X'28') There was an unexpected error code returned from catalog management to the SHOWCAT
processor.

156 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Part 2. Non-VSAM Macro Instructions

 Copyright IBM Corp. 1976, 1999 157

158 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Chapter 5. Introduction to Non-VSAM Programming

The choice of which non-VSAM macro to use depends on which access method is
appropriate for the type of data set being processed:

| � Basic and queued sequential access method (BSAM and QSAM) macros are
| used to process sequential data sets, members of partitioned data sets or
| PDSEs, and HFS files. As used in this book, the term “HFS file” includes NFS
| files.

� Basic partitioned access method (BPAM) macros are used to process
partitioned data sets and PDSEs.

� Basic direct access method (BDAM) macros are used to process direct data
sets.

� Basic and queued indexed sequential access method (BISAM and QISAM)
macros are used to process indexed sequential data sets.

You can use certain access method services commands, such as ALLOCATE,
ALTER, DEFINE NONVSAM, DELETE, LISTCAT, PRINT, and REPRO, with
non-VSAM data sets.

All non-VSAM macros may be issued in 24-bit addressing mode. Many non-VSAM
macros can also be issued in 31-bit addressing mode. When you issue a macro in
24-bit mode, data referred to by the macro must reside below the 16MB line.
When you issue a macro in 31-bit mode, all addresses in registers and four-byte
fields must contain valid 31-bit values although they may point below the 16MB
line. The macro description will state whether it can be issued in 31-bit addressing
mode and whether any input fields may reside above the 16MB line.

The non-VSAM macros can generate reenterable code, depending on the form in
which parameters are expressed.

You can store executable programs in PDSE libraries. Although structurally
identical, PDSE libraries are of two types:

� A data library, containing source programs, user data, and other
record-oriented information.

� A program library, containing executable programs referred to as program
objects.

The type of library is determined, not at allocation time, but when the first member
is stored in it. For additional information on program objects and libraries, see
DFSMS/MVS Program Management.

 Copyright IBM Corp. 1976, 1999 159

160 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Chapter 6. Notational Conventions

A uniform notation describes the format of data management macro instructions.
This notation is not part of the language; it is merely a way of describing the format
of the instructions. The instruction format definitions in this book use the following
conventions:

[] Brackets enclose an optional entry. You may, but need not, include the
entry. Examples are:

 � [length]
 � [MF=E]

| An OR sign (a vertical bar) separates alternative entries. You must
specify one, and only one, of the entries unless you allow an indicated
default. Examples are:

 � [REREAD|LEAVE]
 � [length|'S']

{ } Braces enclose alternative entries. You must use one, and only one, of
the entries. Examples are:

 � BFTEK={S|A}
 � {K|D}
 � {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces.
An example is:

In the example above, you must choose only one entry from the vertical
stack.

. . . An ellipsis indicates that the entry immediately preceding the ellipsis
may be repeated. For example:

 � (dcbaddr,[(options)],. . .)

‘ ’ A ‘ ’ indicates that a blank (an empty space) must be present before the
next parameter.

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as
shown. These entries consist of keywords and the following punctuation
symbols: commas, parentheses, and equal signs. Examples are:

� CLOSE , , , ,TYPE=T

 � MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you
do not specify any of the alternatives. Examples are:

 � [EROPT={ACC|SKP|ABE }]

MACRF={{(R[C|P])}
{(W[C|P|L])}
{(R[C],W[C])}}

 Copyright IBM Corp. 1976, 1999 161

 � [BFALN={F|D }]

Lowercase Italic
Lowercase italic type indicates a value to be supplied by you, the user,
usually according to specifications and limits described for each
parameter. Examples are:

 � number

 � image-id

 � count

 Macro Format
Data management macros follow the rules of assembler language and are written
in the following format:

Use the operands to specify services and options you need and code them
according to the following general rules:

� If the operand is a combination of bold capital letters and italic lowercase letters
(for example, LRECL=absexp), code the capital letters and equal sign exactly
as shown and substitute the appropriate address, name, or value for the italic
lowercase letters.

� Code commas and parentheses exactly as shown.

Note: Omit the comma that follows the last operand in a statement. Brackets
and braces show how to use commas and parentheses the same way
they show how to use operands.

� Several macros contain the name 'S'. Use the apostrophe on both sides of the
S operand.

If you need to substitute a name, value, or address, the notation you use depends
on the operand you are coding. The following two examples show how an operand
can be coded:

DDNAME=symbol
In this example, you can only code a valid assembler-language symbol for the
operand.

dcb address—RX-Type Address, (2-12), or (1)
In the above example, you can substitute an RX-type address, any general
register 2 through 12, or general register 1.

The following examples show what each notation means and how you can code an
operand:

Name Operation Operands (Parameters) Comments

Symbol or
blank

Macro name None, one or more
operands separated by
commas

162 DFSMS/MVS V1R5 Macro Instructions for Data Sets

symbol
Any valid assembler-language symbol, which is an alphabetic character
followed by 0–7 alphanumeric characters, with no special characters except
underscore and no blanks.

decimal digit
Any decimal digit up to the maximum value allowed for the specific operand. If
both symbol and decimal digit are used, an absolute expression is also
allowed.

(2-12)
Any of the general registers 2 through 12, coded in parentheses, to distinguish
the register number from an A-type address. For example, if you code register
3, use the form (3). The following is an example with the CLOSE macro:

 CLOSE ((3))

If you want to use one of the registers 2 through 12, code it as a decimal
number, a symbol (equated to a decimal number), or an expression that yields
a value of 2 through 12.

(1) You can use general register 1 as an operand. Specify the register as (1).
When register 1 is used as an operand, the instruction that loads the parameter
value into the register is not included in the macro expansion.

(0) You can use general register 0 as an operand. Specify the register as (0).
When register 0 is used as an operand, the instruction that loads the parameter
value into the register is not included in the macro expansion.

RX-Type Address
Any valid assembler-language RX-type address. The following shows examples
of each valid RX-type address:

Both ALPHA instructions specify explicit addresses; REG1 and TEN are
absolute symbols. Both use index registers. Both BETA instructions specify
implied addresses. Indexing is omitted from the BETA and GAMMA
instructions. GAMMA1 and GAMMA2 specify implied addresses. The second
operand of GAMMA3 is a literal. LAMBDA1 specifies an explicit address with
no indexing.

A-Type Address
Any address that can be written as a valid assembler-language A-type address
constant. You can write an A-type address constant as an absolute value, a
relocatable symbol, or a relocatable expression. Operands that require an

Name Operation Operand

ALPHA1 L 1,39(4,10)

ALPHA2 L REG1,39(4,TEN)

BETA1 L 2,ZETA(4)

BETA2 L REG2,ZETA(REG4)

GAMMA1 L 2,ZETA

GAMMA2 L REG2,ZETA

GAMMA3 L 2,=F'1000'

LAMBDA1 L 3,20(,5)

 Chapter 6. Notational Conventions 163

A-type address are inserted into an A-type address constant during the macro
expansion process.

absexp
An absolute value or expression. An absolute expression can be an absolute
term or an arithmetic combination of absolute terms. An absolute term can be a
nonrelocatable symbol, a self-defining term, or the length attribute reference.

relexp
A relocatable symbol or expression. A relocatable symbol or expression is one
whose value changes by n if the program in which it appears is relocated n
bytes away from its originally assigned area of storage.

For more details about A-type address constants, and absolute and relocatable
expressions, see Assembler H V2 Language Reference and High Level
Assembler/MVS & VM & VSE Language Reference

Rules for Register Usage
Many macro expansions include instructions that use a base register previously
defined by a USING statement. The USING statement must establish addressability
so that the macro expansion can include a branch around the in-line parameter list,
if present, and list the data fields and addresses specified in the macro operands.

Macros that use a BAL or BALR instruction to pass control to an access method
routine, normally require that register 13 contain the address of an 18-word
register-save area. The READ, WRITE, CHECK, GET, and PUT macros are of this
type. If a macro requires a save area and your program calls the macro in 31-bit
mode, the register 13 contents must be a valid 31-bit address and it may point
above the 16MB line.

Macros that use a supervisor call (SVC) instruction to pass control to an access
method routine might modify general registers 0, 1, 14, and 15 without restoring
them. Unless otherwise specified in the macro description, the contents of these
registers are undefined when the system returns control to the problem program.

When an operand is specified as a register, the problem program must have
inserted the value or address to be used into the register as follows:

� Unless the macro description states otherwise, and the register is to contain a
value, that value must be placed in the low-order portion of the register. Any
unused bits in the register should be set to zero.

� If the register is to contain a 24-bit address, the address must be placed in the
low-order 3 bytes of the register, and the high-order byte of the register should
be set to zero.

� If the register is to contain a 31-bit address, the address must be placed in the
low-order 31 bits of the register, and the high-order bit of the register should be
set to zero.

Note that, if the macro accepts the RX-type address, an efficient way to clear the
high-order byte of a register is to code the parameter as 0(,reg) rather than merely
as (reg).1Then, the macro expands as:

1 For 31-bit addressing mode expansion, the high-order bit of a register can be cleared using this technique.

164 DFSMS/MVS V1R5 Macro Instructions for Data Sets

LA parmreg,ð(,reg) by macro rather than:

LA reg,ð(,reg) by user and LR parmreg,reg by macro

31-Bit Addressing Mode
All non-VSAM macros can be issued in 24-bit mode. Most non-VSAM macros may
also be issued in 31-bit addressing mode. The macro description will state whether
it can be issued in 31-bit mode and which fields may reside above the 16MB line. A
table is included in Appendix A, “Macros Available by Access Method” on
page 391 which indicates for each macro whether it can be issued in 31-bit mode.

For those macros which may be issued in 31-bit addressing mode, the macro
description may state that when it is issued in 31-bit addressing mode, it expects all
addresses to be valid 31-bit addresses. A valid, or clean, 31-bit address is a 4 byte
address in which, when referring to location below the 16MB line, the high order
byte is zero, or, when referring to locations above the 16MB line, the high order bit
is zero. See “Data Above the 16MB Line” on page 167.

Rules for Continuation Lines
You can continue the operand field of a macro on one or more additional lines as
follows:

1. Enter a continuation character (not blank, and not part of the operand coding)
in column 72 of the line.

2. Continue the operand field on the next line, starting in column 16. All columns
to the left of column 16 must be blank. Comments may be continued after
column 16.

Note that if column 72 is filled in on one line and you try to continue an operand or
start a new statement after column 16 on the next line, this statement will be taken
as a comment belonging to the previous statement.

You can code the operand field being continued in one of two ways: 1) Code the
operand field through column 71, with no blanks, and continue in column 16 of the
next line; or 2) truncate the operand field by a comma, where a comma normally
falls, with at least one blank before column 71, and then continue in column 16 of
the next line.

The following table shows an example of each method:

───
Name Operation Operation Comments
1 1ð 16 44 72
───
NAME1 OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5, X

OPERAND6, THIS IS ONE WAY

NAME2 OP2 OPERAND1, THIS IS ANOTHER WAY X X
 OPERAND2, X
 OPERAND3,
───

 Chapter 6. Notational Conventions 165

166 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Chapter 7. Non-VSAM Macro Descriptions

This chapter contains non-VSAM macro formats. The choice of which non-VSAM
macro to use depends on which access method is appropriate for the type of data
set being processed.

� Basic and queued sequential access method (BSAM and QSAM) macros are
used to process sequential data sets, members of partitioned data sets or
PDSEs, and OpenEdition MVS (HFS) files.

� Basic partitioned access method (BPAM) macros are used to process
partitioned data sets and PDSEs.

� Basic direct access method (BDAM) macros are used to process direct data
sets.

� Basic and queued indexed sequential access method (BISAM and QISAM)
macros are used to process indexed sequential data sets.

Note: BDAM, BISAM, and QISAM are not recommended; use VSAM instead.

DD Statements and Dynamic Allocation
Some macro descriptions refer to various keyword parameters that can be coded
on a DD JCL statement. All of them have equivalents that can be specified in a call
to dynamic allocation (SVC 99) or in a TSO ALLOCATE command. The macros
treat all three sources the same.

The non-VSAM access methods do not support the nocapture option of dynamic
allocation.

Data Above the 16MB Line
The BSAM, QSAM, BPAM, and BDAM access methods allow data areas to be
located above the 16MB line. This support includes allowing the caller to issue
most SAM, PAM, and BDAM macros in 31-bit addressing mode regardless of
whether the data is above or below the 16MB line.

The support for areas above the line is provided for the following devices:

| � DASD, including HFS files
 � Tape
� Subsystem (for example, spooled)

 � Dummy
 � VIO
 � Unit record

The support for areas above the line is not provided for the following devices:

 � TSO terminal

Note: The caller must issue macros in 24-bit addressing mode. The DCBE is
ignored for this device.

� OCR/MICR 3886, 3890, 1287, 1288

 Copyright IBM Corp. 1976, 1999 167

Note: The caller must issue macros in 24-bit addressing mode. Also, the
DCBE is ignored for these devices.

To take advantage of providing data areas above the 16MB line for BSAM, BPAM,
and BDAM macros, the issuer of READ, WRITE, and CHECK must execute in
31-bit addressing mode.

To take advantage of providing data areas above the 16MB line for QSAM macros,
the issuer of GET, PUT, and PUTX must execute in 31-bit addressing mode. To
take advantage of QSAM buffers above the line, the user must tell OPEN to obtain
the buffers above the line via the DCBE macro and the issuer of GET, PUT, and
PUTX must then execute in 31-bit addressing mode.

If the issuer of READ, WRITE, CHECK, GET, PUT, and PUTX will be executing in
31-bit addressing mode, then all of the following must have 31-bit addresses and
can reside above or below the 16MB line:

� Data address in the DECB (BSAM and BDAM) or in the GET or PUT macro
(QSAM move mode).

� Save area in register 13.

� DCB extension (DCBE).

� QSAM buffers obtained at OPEN where the DCBE is present and the user has
coded RMODE31=BUFF on the DCBE macro indicating that OPEN can get
buffers above the 16MB line (QSAM).

� EODAD address specified in the DCBE (DCBE EODAD=addr) (BSAM, QSAM,
and BPAM).

| � SYNAD address specified in the DCBE (DCBE SYNAD=addr) (BSAM, QSAM,
| and BPAM). In case your routine uses register 15 as a base register, note that
| the SYNADAF macro modifies the high order byte.

� Key address in the DECB (BDAM).

� Area containing block address (RBA, TTR, or MBBCCHHR) in the DECB
(BDAM).

The following must have valid 31-bit addresses but must reside below the 16MB
line:

� DECB (BSAM, BDAM).

� DCB address on any macro (including the DECB) or in a register.

� BSAM buffers obtained at OPEN (BSAM). (There will be no change for BSAM
when DCB BUFNO is specified).

The following must reside below the line because the addresses are only three
bytes:

� DCB exit list.

� Routines and areas pointed to by the exit list. All exit list exit routines are
entered in 24-bit addressing mode. See Figure 30 on page 170 for a way
around the restriction.

� EODAD address in the DCB. The user’s EODAD routine will be entered in the
addressing mode of the issuer of the CHECK, GET, or FEOV.

168 DFSMS/MVS V1R5 Macro Instructions for Data Sets

| � SYNAD address in the DCB. The user’s SYNAD routine will be entered in the
| addressing mode of the issuer of the CHECK, GET, or PUT. In case your
| routine uses register 15 as a base register, note that the SYNADAF macro
| modifies the high order byte.

� Area containing next block address in the DECB (BDAM).

Following is a complete list of SAM macros which do not support buffers which
reside above the line:

 � BUILD
 � BUILDRCD
 � FREEBUF
 � FREEPOOL
 � GETBUF
 � GETPOOL

The following are not supported for BDAM and may cause unpredictable results:

� Callers in 31-bit addressing mode using record format of variable spanned.
� Callers in 31-bit addressing mode using dynamic buffering.
� Callers in 31-bit addressing mode using BSAM to create a BDAM data set.

| How to Supply an Exit Routine Above 16 MB
Figure 30 on page 170 is an example of using a DCB exit list exit routine above
the line. This is an example of a technique to have a 31 bit exit routine residing
above the 16MB line but with an entry point below the line. It is also an example of
a glue routine.

 Chapter 7. Non-VSAM Macro Descriptions 169

 BLDL

BigProg AMODE 31 Execute in 31-bit addressing mode
BigProg RMODE ANY Reside above the 16MB line

STORAGE OBTAIN,LENGTH=LenArea,LOC=BELOW Get DCB & etc. storage
LR R2,R1 Load work area base register

 USING WorkArea,R2
MVC MyDCB,ModelDCB Create DCB below the line
LA Rð,EXL Point the DCB to exit list below

 STCM Rð,B'ð111',DCBEXLSA-IHADCB+MyDCB the line
MVI EXL,X'85' Set last entry & DCB OPEN exit list
LA Rð,OPEN24 Point the exit list to the exit rtn
STCM Rð,B'ð111',EXLOPEN that is below the line
MVC OPEN24,ModOPEN24 Move glue code to below line
LA Rð,OPEN31 Show the 24-bit code where the
ST Rð,AdOPEN31 31-bit code is above the line
OI AdOPEN31,X'8ð' Set bit ð to AMODE 31 in address
MVC OpenList,ModelOPEN Build OPEN parameter list
OPEN (MyDCB),MF=(E,OpenList) List is below the line

 .
 .

BR R14 Return to caller
OPEN31 EQU \ Entry point of DCB OPEN exit above the line
 .
 .

BSM ð,R14 Switch to 24-bit mode and return to OPEN
ModelOPEN OPEN (,INPUT),MF=L Model OPEN parameter list
LenOpen EQU \-ModelOPEN
\ The following is the model for the DCB OPEN exit routine entry point.
\ We copy this code to the work area, which is below the line. The
\ BSM sets the current addressing mode (24) in bit ð of R14 without
\ changing anything else in R14. It also switches to 31-bit due to
\ bit ð in R15 and branches to the address in R15.
ModOPEN24 L R15,AdOPEN31-OPEN24(,R15) Entry pt to DCB OPEN exit rtn

BSM R14,R15 Save AMODE, switch to 31-bit and branch
LenOPEN24 EQU \-ModOPEN24
\ DCB model, which is above the line.
ModelDCB DCB DSORG=PS,DDNAME=SYSIN,MACRF=(GL,PL)
\
\ Dynamic storage that must reside below 16MB line due to DCB & exit
\ list restrictions.
WorkArea DSECT
MyDCB DS XL(DCBLngQS) Actual QSAM DCB
\ Each entry in DCB exit list is four bytes.
EXL DC X Last entry in exit list and for DCB OPEN exit
EXLOPEN DS AL3 Address of 24-bit DCB OPEN exit routine
OPENList DS XL(LenOpen) OPEN parameter list
\ The following is executable code to branch above the 16MB line.
OPEN24 DS XL(LenOPEN24) DCB OPEN exit below 16MB line
AdOPEN31 DS A Address of DCB OPEN exit above the line
LenArea EQU \-WorkArea

DCBD DSORG=PS,DEVD=DA Mapping macro for DCB

Figure 30. Using a DCB exit list when the application is above the line.

BLDL—Build a Directory Entry List (BPAM)
The BLDL macro is used to obtain a list of information from the directory of a
partitioned data set or partitioned data set extended (PDSE). The problem program
must supply a storage area that includes information about:

� The number of entries in the list

170 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BLDL

� The length of each entry

� The name of each member (or alias) to be searched for.

� The caller may optionally supply a list prefix area. An 8 byte list prefix is
required if any options (such as NOCONNECT) are supplied.

Member and alias names in the list must be in alphameric order. You must test all
read and write operations using the same data control block for completion before
issuing the BLDL macro.

The BLDL macro establishes a connection to each PDSE member when it is found
in the PDSE directory, unless the NOCONNECT option is used. The connection
remains until the PDSE is closed. See DFSMS/MVS Using Data Sets for more
information on the BLDL macro and PDSE connections.

The BLDL macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the BLDL macro is:

dcb address—RX-Type Address, (2-12) or (1)
| specifies the address of an open data control block (DCB). The DCB must be
| opened to a partitioned data set, a PDSE, or a concatenation of partitioned and
| PDSE data sets. You can specify zero to indicate that the data set search order
| begins with the task libraries, then proceeds to the job library or step library
| (whichever is active) followed by the link list libraries.

| If you specify a non-zero DCB address, and a requested member is not found
| in the partitioned data set, PDSE, or concatenation to which the DCB is open,
| then the search for that member will stop; the job library, step library, task
| libraries or link list libraries will not be searched.

list address—RX-Type Address, (2-12), or (0)
specifies the address of the list completed when the BLDL macro is issued.
The list must be on a halfword boundary. When BLDL is issued in 31-bit
addressing mode, the list may reside above the 16MB line. The list address
points to the FF field of the parameter list without regard to whether a prefix
was specified. The following figure shows the format of the list:

[label] BLDL dcb address
,list address
[,option]

 Chapter 7. Non-VSAM Macro Descriptions 171

 BLDL

List List Description List ð or More
Address─┐ Field Entry (LL bytes) Entries (FF total)
 ┌┌───┴────┐┌───────────────────┴─────────────────┐┌────────┴─────────┐
 ┌────┬────┬────────────┬─────┬─┬─┬─┬──────────────┬─────────┐ ┌──────┐

│ FF │ LL │ NAME 1 │ TTR │K│Z│C│ USER DATA │ NAME 2 └┐└┐ │
Length └────┴────┴────────────┴─────┴─┴─┴─┴──────────────┴──────────┘ └─────┘
(bytes) 2 2 8 3 1 1 1 ð to 62

FF: This field must contain a binary value indicating the total number of entries in the list.

LL : This field must contain a binary value indicating the length, in bytes, of each entry in the
list. If the exact length of the entry is known, specify the exact length. Otherwise, specify at
least 58 bytes (decimal) if an entry in the list is to be used with an ATTACH, LINK, LOAD, or
XCTL macro. The minimum length for a list is 12 bytes.

NAME: This field must contain the member name or alias to be located. The name must
start in the first byte of the name field and be padded to the right with blanks (if necessary)
to fill the 8-byte field.

When the BLDL macro is executed, 5 fields of the directory entry list are filled in by the
system. The specified length (LL) must be at least 14 bytes to fill in the Z and C fields. If the
LL field is 12 bytes, only the NAME, TT, R, and K fields are returned. The 5 fields are:

TT: Indicates the two-byte relative track number where the beginning of the member is
located.

R: Indicates the one-byte relative block (record) number on the track indicated by TT.

Note: For a PDSE, TTR is a token that does not represent the physical location of the
member in the data set.

K: Indicates the concatenation number of the data set. For the first or only data set, this
value is zero.

Z: Indicates where the system found the directory entry:

Code Meaning
0 Private library
1 Link library
2 Job, task, or step library
3-16 Job, task, or step library of parent task n, where n = Z-2

172 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BSP

C: Indicates the type of name (primary or alias) for the number of note list fields (TTRNs),
and the length of the user data field (indicated in halfwords). The following describes the
meaning of the 8 bits:

Bit Meaning
0=0 Indicates a member name.
0=1 Indicates an alias.
1-2 Indicates the number of TTRN fields (maximum of 3) in the user data field.
3-7 Indicates the total number of halfwords in the user data field.

USER DATA : The user data field contains the user data from the directory entry. If the
length of the user data field in the BLDL list is equal to or greater than the user data field of
the directory entry, the entire user data field is entered in the list. Otherwise, the list contains
only the user data for which there is space.

option NOCONNECT
specifies that the PDSE member is not to be connected. When issuing BLDL,
you must provide a prefix of 8 bytes that immediately precedes the list of
member names. The BLDL macro expansion will clear and initialize the prefix.
The listaddr parameter must point to the FF field.

 Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains a return code. The low-order byte of register 0 contains a
reason code.

The BLDL return and reason codes are:

Return Code (15) Reason Code (0) Meaning

00 (X'00') 00 (X'00') Successful completion.

04 (X'04') 00 (X'00') One or more entries in the list could not be filled; the list
supplied can be invalid (the list length was less than 12 or
the number of entries was zero or negative). If a search is
attempted but the entry is not found, the R field (byte 11) for
that entry is set to zero.

08 (X'08') 00 (X'00') A permanent I/O error was detected when the system
attempted to search the directory.

08 (X'08') 04 (X'04') Insufficient virtual storage was available.

08 (X'08') 08 (X'08') Invalid data extent block (DEB), or the DEB is not owned by
a TCB in the current family of TCBs, or the UCB address in
the DEB is zero (this indicates a dummy field.

BSP—Backspace a Physical Record (BPAM, BSAM—Magnetic Tape
and DASD Only)

The BSP macro backspaces the current volume one data block (physical record).
All input and output operations must be tested for completion before the BSP
macro is issued. You can use the BSP macro only with a BSAM or BPAM DCB.
You can use the BSP macro on a data set created by QSAM if it is opened using
BSAM. Do not use the BSP macro if the CNTRL, NOTE, or POINT macro is being
used (see 174 for NOTE and POINT exceptions).

 Chapter 7. Non-VSAM Macro Descriptions 173

 BSP

Any attempt to backspace across a file mark results in a return code of X'04' and
your tape or direct access volume is not positioned after the file mark. This means
you cannot issue a successful BSP macro after your EODAD routine is entered
unless you first reposition the tape or direct access volume into your data set. (Use
CLOSE TYPE=T to position to the end of your data set.)

PDSE You can use the BSP macro to backspace the current member one
simulated block. You can then reread or rewrite the simulated block. However, you
cannot backspace beyond the start of a PDSE directory nor backspace beyond the
start of a PDSE member. See the chapter on PDSEs in DFSMS/MVS Using Data
Setsfor information on using the BSP macro with variable spanned and variable
blocked spanned records.

Extended format data sets

| The system treats the stripes of a striped data set as one volume. If it is a
| compressed format data set, the amount of data backspaced over is what was
| originally written by one WRITE macro or simulated by PUT macros as a block.

HFS Files

BSP is supported for HFS files (except for FIFO or character special files or when
PATHOPTS=OAPPEND) by positioning you to the beginning of the block which
was just read or written.

� BSP can only be issued following the completion of a successful CHECK (for
READ or WRITE), NOTE, or CLOSE TYPE=T LEAVE request. (Note that a
BSP cannot be followed by another BSP). A BSP following a request other than
those listed above gives a return code of X'04' and a reason code of X'0E'.

� A BSP issued for a FIFO or character special file gives a return code of X'04'
and a reason code of X'0F'.

� A BSP issued for an HFS file opened with PATHOPTS=OAPPEND gives a
return code of X'04' and a reason code of X'10'.

Magnetic Tape

A backspace is always made toward the beginning of the tape.

SYSIN or SYSOUT Data Sets

A BSP macro is ignored, but a completion code is returned.

The BSP macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the BSP macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the volume to be
backspaced. You must open the data set on the volume to be backspaced
before issuing the BSP macro. When issued in 31-bit addressing mode, the
input DCB address must be a clean 31-bit address.

[label] BSP dcb address

174 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BSP

 Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains a return code. The low-order byte of register 0 contains a
reason code.

The BSP return and reason codes are:

Return Code (15) Reason Code (0) Meaning

00 (X'00') 00 (X'00') Successful completion.

04 (X'04') 01 (X'01') A backspacing request was ignored on a SYSIN or
SYSOUT data set.

04 (X'04') 02 (X'02') Backspace not supported for this device type.

04 (X'04') 03 (X'03') Backspace failed; insufficient virtual storage was
available.

04 (X'04') 04 (X'04') Backspace failed; permanent I/O error.

04 (X'04') 05 (X'05') Backspace into load point or beyond start of data set on
the current volume.

04 (X'04') 06 (X'06') The supplied DCB or its DEB is invalid.

04 (X'04') 07 (X'07') Backspace detected an invalid extent value (M).

04 (X'04') 08 (X'08') Backspace issued while I/O was in progress.

04 (X'04') 09 (X'09') Backspace was attempted within a PDSE directory.

04 (X'04') 10 (X'0A') Backspace failed; backspace past the start of a PDSE
member is not allowed.

04 (X'04') 11 (X'0B') Backspace failed; system control block used for PDSE
processing contains incorrect information. This is a likely
system logic error.

04 (X'04') 12 (X'0C') SMS error occurred while processing a PDSE member
with variable blocked records.

04 (X'04') 13 (X'0D') Backspace failed; system control block used for
processing extended format data sets contains incorrect
information.

04 (X'04') 14 (X'0E') Backspace failed for an HFS file. Backspace was issued
following a macro request other than CHECK, NOTE, or
CLOSE TYPE=T LEAVE.

04 (X'04') 15 (X'0F') Backspace failed. Backspace issued for a FIFO or
character special file is not allowed.

04 (X'04') 16 (X'10') Backspace failed. Backspace issued for an HFS file
opened with PATHOPTS=OAPPEND is not allowed.

08 (X'08') 01 (X'01') Backspace not successful; internal system error occurred
while processing a PDSE.

 Chapter 7. Non-VSAM Macro Descriptions 175

 BUILD

BUILD—Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM, and
QSAM)

| The BUILD macro is used to construct a buffer pool in an area provided by the
| problem program. The buffer pool can be used by more than one data set through
| separate data control blocks. For BDAM, BISAM, BPAM and BSAM your program
| can obtain individual buffers from the buffer pool using the GETBUF macro, and
| return them to the buffer pool using a FREEBUF macro. For QISAM and QSAM,
| OPEN obtains buffers from and CLOSE returns buffers to the buffer pool. See
| DFSMS/MVS Using Data Sets for an explanation of the interaction of the DCB,
| BUILD, and GETBUF macros in each access method, and the buffer size
| requirements.

The BUILD macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the BUILD macro is:

area address—RX-Type Address, (2-12), or (1)
specifies the address of the area to be used as a buffer pool. The area must
start on a fullword boundary. When issued in 31-bit addressing mode, the input
area address must be a clean 31-bit address. If the area resides above the
line, it cannot be used by other access method macros.

The following illustration shows the format of the buffer pool:

[label] BUILD area address
,{number of buffers,buffer length|(0)}

Buffer Pool
Control
Block

Buffer Buffer

8 bytes Buffer Buffer
Length Length

Area Length
Area Length=(Buffer Length) x (Number of Buffers) + 8

Area Address

number of buffers—symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers in the buffer pool to a maximum of 255.

buffer length—symbol, decimal digit, absexp, or (2-12)
specifies the length, in bytes, of each buffer in the buffer pool. If the value
specified for the buffer length is not a multiple of four the system rounds the
value specified to the next higher multiple of four. The maximum length that
can be specified is 32760 bytes. For QSAM, the buffer length must be at least
as large as the value specified in the block size (DCBBLKSI) field of the data
control block.

176 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 BUILDRCD

(0) The number of buffers and buffer length can be specified in general register 0.
The following illustration shows that if (0) is coded, register 0 must contain the
binary values for the number of buffers and buffer length.

 Register ð
 ┌─────────────────────────────┬──────────────────────────────┐

│ Number of Buffers │ Buffer Length │
 ├─────────────────────────────┼──────────────────────────────┤
 │ │ │
Bits: │ð 15│16 31│

BUILDRCD—Build a Buffer Pool and a Record Area (QSAM)
The BUILDRCD macro builds a buffer pool and a record area in an area of storage
you provide. This macro is used only for variable-length, spanned records
processed in QSAM locate mode. If the extended logical record interface (XLRI) is
used to process RECFM=DS or RECFM=DBS records (ISO/ANSI/FIPS variable
spanned or variable blocked spanned), you can use the BUILDRCD macro to build
a record area to a maximum length of 16777183 bytes. Using this macro before
the data set is opened, or before the end of the DCB open exit routine, provides a
buffer pool that can be used for a logical record interface rather than a segment
interface for variable-length spanned records. To invoke a logical record interface,
specify BFTEK=A in the data control block (DCB). You cannot specify the
BUILDRCD macro when logical records exceed 32760 bytes.

You must release the buffer pool and the record area after issuing a CLOSE macro
for all the data control blocks that use the buffer pool and the record area.

The BUILDRCD macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The standard form of the BUILDRCD macro is as follows (the list and execute
forms are shown following the description of the standard form):

area address—A-Type Address or (2-12)
specifies the address of the area used as a buffer pool. The area must start on
a fullword boundary. When issued in 31-bit addressing mode, the input area
address must be a clean 31-bit address and it must reside below the line.
BUILDRCD does not support buffers above the line.

Note: area length = [(buffer length) * (number of buffers) + 12]

number of buffers—symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers, to a maximum of 255, in the buffer pool.

buffer length—symbol, decimal digit, absexp, or (2-12)
specifies the length, in bytes, of each buffer in the buffer pool. The value
specified for the buffer length must be a fullword multiple; otherwise, the

[label] BUILDRCD area address
,number of buffers
,buffer length
,record area address
[,record area length]

 Chapter 7. Non-VSAM Macro Descriptions 177

 BUILDRCD

system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32760 bytes.

record area address—A-Type Address or (2-12)
specifies the address of the storage area used as a record area. The area must
start on a doubleword boundary and have a length of the maximum logical
record (LRECL) plus 32 bytes. When issued in 31-bit addressing mode, the
record area address must be a clean 31-bit address and it must reside below
the line. BUILDRCD does not support buffers above the line.

record area length—symbol, decimal digit, absexp, or (2-12)
specifies the length of the record area used. The area must be as long as the
maximum length logical record plus 32 bytes for control information. If the
record area length is omitted, the problem program must store the record area
length in the first 4 bytes of the record area.

 BUILDRCD—List Form
The list form of the BUILDRCD macro is used to construct a program parameter
list. The description of the standard form of the BUILDRCD macro explains the
function of each parameter. The format description below indicates the optional and
required parameters in the list form only.

The list form of the BUILDRCD macro is:

area address—A-Type Address

number of buffers—symbol, decimal digit, or absexp

buffer length—symbol, decimal digit, or absexp

record area address—A-Type Address

record area length—symbol, decimal digit, or absexp

MF=L
specifies that the BUILDRCD macro is used to create a parameter list that is
referred to by an execute form instruction.

Note: You can construct a parameter list by coding only MF=L (without the
preceding comma). In this case, the list is constructed for the area address,
number of buffers, buffer length, and record area address parameters. If the
record area length is also required, code the parameters as follows:

 [label] BUILDRCD,,,,0,MF=L

The preceding example shows the coding to construct a list containing address
constants with a value of 0 in each constant. The actual values can then be
supplied by the execute form of the BUILDRCD macro.

[label] BUILDRCD area address
,number of buffers
,buffer length
,record area address
[,record area length]
,MF=L

178 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CHECK

 BUILDRCD—Execute Form
A remote parameter list is referred to, and can be modified by, the execute form of
the BUILDRCD macro. The description of the standard form of the BUILDRCD
macro explains the function of each parameter. The format description below
indicates the optional and required parameters for the execute form only.

The execute form of the BUILDRCD macro is:

area address—RX-Type Address or (2-12)

number of buffers—absexp

buffer length—absexp

record area address—RX-Type Address or (2-12)

record area length—absexp

MF=(E,list address)
specifies that the execute form of the BUILDRCD macro is used, and an
existing parameter list (created by a list-form instruction) is used. MF is coded
as follows:

E

list address—RX-Type Address, (2-12), or (1)

[label] BUILDRCD [area address]
,[number of buffers]
,[buffer length]
,[record area address]
[,record area length]
,MF=(E,list address)

CHECK—Wait for Completion of a Request (BDAM, BISAM, BPAM, and
BSAM)

The CHECK macro places the active task in the wait condition, if necessary, until
the associated input or output operation is completed. The input or output operation
is then tested for errors and exceptional conditions. If the operation completes
successfully, control is returned to the instruction following the CHECK macro. If the
operation does not complete successfully, the error analysis (SYNAD) routine or
end-of-data (EODAD) routine is given control. If the appropriate routine is not
provided, the task is abnormally terminated. These routines are discussed in the
SYNAD and EODAD parameters of the DCB and DCBE macros.

The following conditions are also handled for BPAM and BSAM only:

When Reading :

The end-of-data (EODAD) routine is given control if an input request is made after
all the records are retrieved. Volume switching is automatic for a multivolume data
set not opened for UPDAT. For a multivolume data set opened for update, the
end-of-data routine is entered at the end of each volume. The system treats a
striped data set as a single volume.

 Chapter 7. Non-VSAM Macro Descriptions 179

 CHECK

When Writing :

Additional space on the device is obtained when the current space is filled and
more WRITE macros have been issued.

When writing on a cartridge tape, CHECK ensures that the data has been
transferred to the tape subsystem and not necessarily to tape. To ensure that all of
the data is on the tape, issue either a CLOSE macro or a SYNCDEV macro with
INQ=NO. However, this generally is not useful and gives poor performance. If any
data fails to get on the tape, a subsequent CHECK macro or CLOSE macro will
detect and handle the I/O error.

| You must issue a CHECK, WAIT, or EVENTS macro for each input and output
| operation. For BSAM and BPAM, the CHECK, WAIT, or EVENTS macros must be
| issued in the same order as the READ or WRITE macros were issued for the data
| set. For information on when you can use the WAIT or EVENTS macro, see
| DFSMS/MVS Using Data Sets.

Processing PDSEs :

If a PDSE member is open for update and in a storage class with “Guaranteed
Synchronous Write” specified, a CHECK macro issued following a WRITE macro
guarantees that the data is synchronized to DASD. Otherwise, synchronization is
not guaranteed until CLOSE, or the STOW macro or the SYNCDEV macro is
issued. Specifying “Guaranteed Synchronous Write” in the storage class produces
the same result as issuing the SYNCDEV macro after every CHECK. On output,
CHECK guarantees that the ECB is posted and that the data has been moved from
your buffer into an internal system buffer, allowing your buffer to be available for
reuse.

Processing HFS Files :

CHECK guarantees that the ECB is posted and that any output data has been
moved from your buffer to an internal system buffer, allowing your buffer to be
available for reuse.

CHECK does not necessarily guarantee that the output data has been
synchronized to the output file, unless PATHOPTS=OSYNC is specified. If
PATHOPTS=OSYNC is specified, CHECK guarantees that the output data has
been synchronized to the output file. Issuing the CLOSE or the SYNCDEV macro
guarantees that all output data has been synchronized to the output file.

Processing Compressed Format Data Sets :

When processing a compressed format data set on output, CHECK guarantees that
the ECB is posted and that the data has been moved from your buffer into an
internal system buffer, allowing your buffer to be available for reuse. CHECK does
not guarantee that the data is synchronized to DASD. Synchronization is not
guaranteed until CLOSE or the SYNCDEV macro is issued. Specifying
“Guaranteed Synchronous Write” in the storage class produces the same result as
issuing the SYNCDEV macro after every CHECK.

| Data Conversion

180 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CHECK

| You can request conversion by coding LABEL=(,AL) or (,AUL) in the DD statement,
| or by coding OPTCD=Q in the DCB macro or DCB subparameter of the DD
| statement. If conversion is requested, the check routine automatically converts
| BSAM records, as they are read, from one character representation to another if
| the record format is F, FB, D, DB, or U. Conversion occurs when the check routine
| determines that the input buffer is full. Conversion is performed according to one of
| the following techniques:

| � Coded Character Set Identifier (CCSID) Conversion

| If CCSIDs are supplied from any source2 for ISO/ANSI V4 tapes, records are
| converted from the CCSID which represents the data on tape to the CCSID as
| seen by the problem program. You can also prevent conversion by supplying a
| special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied by any
| source, data management converts the records from ASCII code to EBCDIC
| code using specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete description of
| CCSID conversion and Default Character conversion.

The CHECK macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the CHECK macro is:

decb address—RX-Type Address, (2-12), or (1)
specifies the address of the data event control block created or used by the
associated READ or WRITE macro. When issued in 31-bit addressing mode,
the input DECB address must be a clean 31-bit address. If your SYNAD or
EODAD routine is entered, it is entered in the addressing mode in which the
CHECK was issued. If you supplied a SYNAD or EODAD routine which resides
above the line in the DCBE, then the CHECK must be issued in 31-bit
addressing mode.

DSORG={IS|ALL }
specifies the type of data set organization. You can specify:

IS specifies that the program generated is for BISAM use only.

ALL
specifies that the program generated is for BDAM, BISAM, BPAM, or
BSAM use.

If DSORG is omitted, the program generated is for BDAM, BPAM, or BSAM
use only.

[label] CHECK decb address
[,DSORG={IS |ALL }]

| 2 CCSID may be supplied in the CCSID subparameter of a JOB, EXEC, or DD statement or the tape label.

 Chapter 7. Non-VSAM Macro Descriptions 181

 CLOSE

CHKPT—Take a Checkpoint for Restart within a Job Step
The CHKPT macro is coded inline in the problem program. When this macro
executes, the operating system writes a checkpoint entry in a checkpoint data set.
The entry consists of job step information, such as virtual-storage data areas, data
set position, and supervisor control, from the problem program.

After the checkpoint information has been written, control is returned to the
instruction following the CHKPT macro.

For information about the CHKPT macro, see DFSMS/MVS Checkpoint/Restart.

CLOSE—Disconnect Program and Data (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The CLOSE macro creates output data set labels and allows you to position
volumes. The fields of the data control block (DCB) and DCBE are restored to the
condition that existed before the OPEN macro was issued, and the data set is
disconnected from the processing program. You can specify final volume
positioning or disposition for the current volume to override the positioning implied
by the DISP parameter of the DD statement. Any number of dcb address
parameters and associated options can be specified in the CLOSE macro.

After a CLOSE has been issued for several data sets, a return code of 4 indicates
that at least one of the data sets, VSAM or non-VSAM, was not closed
successfully.

A FREEPOOL macro should normally follow a CLOSE macro (without TYPE=T) to
regain the buffer pool storage space if OPEN or GETPOOL built the buffer pool.
This also allows a new buffer pool to be built if the DCB is reopened with different
record size attributes. However, if you requested via the DCBE that OPEN obtain
QSAM buffers above the line, CLOSE frees the buffer pool obtained by OPEN.
Therefore, in this case, a FREEPOOL macro is not required following the CLOSE
macro.

Associated data sets for an IBM 3525 Card Punch can be closed in any sequence,
but, if one data set is closed, I/O operations cannot be initiated for any of its
associated data sets. Additional information about closing associated data sets is
contained in DFSMS/MVS Using Data Sets.

A special parameter, TYPE=T, temporary close, is provided for processing with
BSAM.

| The CLOSE macro does not support more than a total of 255 spooled, SUBSYS or
| compressed format data sets, for one invocation.

Extended format data sets : If you request release of unused space for extended
format data sets, CLOSE releases space on each stripe if possible. After the space
is released, the size of some stripes may differ slightly from others. Depending on
the unit used for allocation, the difference will be at most one track or cylinder.

When a compressed format data set is written using BSAM or QSAM, the CLOSE
macro ensures that all data has been synchronized to DASD.

182 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CLOSE

PDSEs: After PDSE members are written or updated using BSAM or QSAM, the
CLOSE macro synchronizes member data to DASD.

HFS Files : When a file is written using BSAM or QSAM, the CLOSE macro
ensures that all data has been synchronized to the file.

SMF records : CLOSE does not write SMF type 14/15 records for HFS files.
DFSMS/MVS relies on OS/390 UNIX to write appropriate SMF records when
requested by the system programmer.

The CLOSE macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The standard form of the CLOSE macro is as follows (the list and execute forms
are shown following the description of the standard form):

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened data set to be
closed.

Note: If the register format is used, then the register must be enclosed within
parentheses. For example, CLOSE ((2)).

option
Each of these options indicates the volume positioning to occur when the data
set is closed. These options are generally used with TYPE=T for data sets on
magnetic tape. However, options specified in the CLOSE macro override
disposition specifications in the JCL for all data sets. The options are:

REREAD
specifies the current volume is to be positioned to reprocess the data set. If
processing was forward, the volume is positioned to the beginning of the
data set. If processing was backward (RDBACK), the volume is positioned
to the end of the data set. If FREE=CLOSE is specified in the JCL, the data
set is not unallocated until the end of the job step.

LEAVE
specifies the current volume is to be positioned to the logical end of the
data set. If processing was forward, the volume is positioned to the end of
the portion of the data set residing on the current volume. If processing was
backward (RDBACK), the volume is positioned to the beginning of the
portion of the data set residing on the current volume. If FREE=CLOSE is
specified in the JCL, the data set is not unallocated until the end of the job
step.

REWIND
specifies the current magnetic tape volume is to be positioned at the load
point, regardless of the direction of processing. REWIND cannot be
specified when TYPE=T is specified. If FREE=CLOSE is coded on the DD
statement associated with the data set being closed, coding the REWIND
option frees the data set when it is closed rather than at the end of the job
step.

[label] CLOSE (dcb address[,[option][,...]])
[,TYPE=T]
[,MODE=24|31]

 Chapter 7. Non-VSAM Macro Descriptions 183

 CLOSE

FREE
specifies the current data set is freed when the data set is closed, rather
than when the job step terminates. For tape data sets, this means that the
volume is eligible for use by other tasks or to be demounted. Direct access
volumes can also be freed for use by other tasks. They can be freed for
demounting if (1) no other data sets on the volume are open and (2) the
volume is otherwise demountable. Do not use this option with CLOSE
TYPE=T. (For other restrictions on the FREE parameter, see OS/390 MVS
JCL Reference.)

DISP
specifies a tape volume is to be disposed of in the manner implied by the
DD statement associated with the data set. Direct access volume
positioning and disposition are not affected by this parameter. There are
several dispositions that can be specified in the DISP parameter of the DD
statement; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG.

Depending on how the DISP option is coded in the DD statement, the
current magnetic tape volume is positioned as follows:

If FREE=CLOSE is coded in the DD statement associated with this data
set, coding the DISP option in the CLOSE macro results in the data set
being freed when the data set is closed, rather than at the time the job step
is terminated.

Note: When the option subparameter is omitted, DISP is assumed. For
TYPE=T, this is processed as LEAVE during execution. The LEAVE
and REREAD options are used only for magnetic tape or CLOSE
TYPE=T.

TYPE=T
You can code CLOSE TYPE=T to temporarily close sequential data sets on
magnetic tape and direct access volumes processed with BSAM. When you
use TYPE=T, the DCB used to process the data set maintains its open status,
and you should not issue another OPEN macro to continue processing the
same data set. This option cannot be used in a SYNAD exit routine.

TYPE=T causes the system control program to process labels, modify some of
the fields in the system control blocks for that data set, and reposition the
volume (or current volume for multivolume data sets) in much the same way
that the normal CLOSE macro does.

When you code TYPE=T, you can specify that the volume either be positioned
at the end of data (the LEAVE option) or be repositioned at the beginning of
data (the REREAD option). Magnetic tape or DASD volumes are repositioned
either immediately before the first data record or immediately after the last data
record. The presence of tape labels has no effect on repositioning.

DISP Parameter Action

PASS Forward space to the end of data set on the current volume.

DELETE Rewind the current volume.

KEEP, CATLG, or
UNCATLG

The volume is rewound and unloaded, if necessary.

184 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CLOSE

For PDSEs and partitioned data sets, CLOSE TYPE=T does no operation
except when reading the PDSE or partitioned data set directory sequentially. If
you code CLOSE TYPE=T with the REREAD option, the data set is
repositioned to the beginning of the directory.

If you code the RLSE keyword with the SPACE parameter on the DD statement
that describes the output data set, it is ignored by temporary close (CLOSE
TYPE=T). If the last operation occurring before the normal CLOSE (without
TYPE=T) and after the temporary close was a write, then any unused space is
released.

For extended format data sets open for output, CLOSE TYPE=T updates the
data set label for each stripe to correctly reflect the used space on each
volume.

While an extended format data set is open for output, the data set labels do not
correctly reflect the used space in the data set. An open to an input or update
DCB (while the output DCB is still open for output) will not reflect the correct
data set size of an extended format data set. You may choose to issue a
CLOSE LEAVE,TYPE=T on the output DCB to cause subsequent OPENs for
input/update to reflect the correct amount of used space. CLOSE TYPE=T is
ignored for a FIFO and character special HFS file.

MODE=24|31
You can code CLOSE MODE=31 to specify a long form parameter list that can
contain 31-bit addresses. The default, MODE=24, specifies a short form
parameter list with 24-bit addresses. Your program does not need to be
executing in 31-bit addressing mode to use MODE=31 in the CLOSE macro.
This parameter specifies the form of the parameter list, not the addressing
mode of the program.

The caller of the standard form of the macro with the short form of the
parameter list must reside below the 16MB line, but the caller can be executing
in 31-bit mode. All access method control blocks (ACBs) and DCBs are below
the 16MB line.

The long form parameter list can reside above or below the 16MB line.
Although the access method control block (ACB) or DCB address is contained
in a 4-byte field, the DCB must be below the 16MB line. Except for VSAM or
Virtual Telecommunications Access Method (VTAM) ACBs, all ACBs must also
be below the 16MB line. Therefore, the leading byte of the ACB or DCB
address must contain zeros. If the byte contains something other than zeros,
an IEC290I message is issued and the data set is not closed.

For additional information and coding restrictions, see DFSMS/MVS Using Data
Sets.

 CLOSE—List Form
The list form of the CLOSE macro is used to construct a data management
parameter list. Any number of parameters (data control block addresses and
associated options) can be specified. A parameter list constructed by a CLOSE
macro, list form, can be referred to by either an OPEN or CLOSE execute-form
instruction. You must ensure that the MODE parameters on the list and execute
forms are consistent. Errors and unpredictable results occur if the modes are
inconsistent.

 Chapter 7. Non-VSAM Macro Descriptions 185

 CLOSE

There are two forms of the list, the short form and the long form. The short form list
consists of a one-word entry for each DCB or ACB in the parameter list. The
high-order byte is used for the options and the 3 low-order bytes are used for the
DCB address. The long form list consists of an eight byte entry for each DCB or
ACB in the parameter list. The high order byte is used for the options and the low
order four bytes are used for the DCB or ACB address. For either form of list, the
end of the list is indicated by a 1 in the high-order bit of the last entry's option byte.
The length of a list generated by a list-form instruction must be equal to the
maximum length required by an execute-form instruction that refers to the same list.
You can construct a maximum length list by one of two methods:

� Code a list-form instruction with the maximum number of parameters required
by an execute-form instruction that refers to the list.

� Code a maximum length list by using commas in a list-form instruction to
acquire a list of the appropriate size. For example, coding CLOSE
(,,,,,,,,,),MF=L would provide a list of 5 fullwords (5 dcb addresses and 5
options).

Entries at the end of the list that are not referred to by the execute-form instruction
are assumed to have been filled in when the list was constructed or by a previous
execute-form instruction. Before using the execute-form instruction, you can shorten
the list by placing a 1 in the high-order bit of the last DCB entry to be processed.

A zeroed work area on a word boundary is equivalent to CLOSE (,DISP,...),MF=L
and can be used in place of a list-form instruction. Allocate four bytes per entry if
you wish the effect of MODE=24. Allocate eight bytes per entry if you wish the
effect of MODE=31. The high-order bit of the last DCB entry must contain a 1
before this list can be used with the execute-form instruction.

The list form of the CLOSE macro is:

dcb address—A-Type Address
option—Same as standard form

TYPE=T
can be coded in the list-form instruction to allow the specified option to be
checked for validity when the program is assembled.

MF=L
specifies the CLOSE macro is used to create a data management parameter
list referred to by an execute-form instruction.

MODE=24|31
coded the same as the standard form. This specification must match that of the
execute form.

[label] CLOSE ([dcb address,],[option],...)
[,TYPE=T]
[,MF=L
[,MODE=24|31]

186 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CLOSE

 CLOSE—Execute Form
A list form of the CLOSE macro is used in and can be modified by the execute
form of the CLOSE macro. The parameter list can be generated by the list form of
either an OPEN macro or a CLOSE macro.

The description of the standard form of the CLOSE macro explains the function of
each parameter.

The execute form of the CLOSE macro is:

dcb address—RX-Type Address or (2-12)

option—If specified, same as the standard form. If not specified, the option
specified in the list form of the CLOSE macro is used.

TYPE=T—Same as standard form.

MF=(E,address of the list form)
specifies that the execute form of the CLOSE macro is being used, and the
parameter list is created by the list form of the CLOSE macro. MF= is coded as
described in the following:

E address of the list form of the CLOSE (or OPEN) macro —RX-Type
Address, (2-12), or (1)

MODE=24|31
coded the same as the standard form. This specification must match that of the
list form.

[label] CLOSE [([dcb address,],[option],...)]
[,TYPE=T]
[,MF=(E,address of list form)
[,MODE=24|31]

CLOSE Return Codes
When your program receives control after it has issued a CLOSE macro, a return
code in register 15 indicates whether all data sets were closed successfully.

The CLOSE return codes are:

Return Code (15) Meaning

0(X'0') All data sets were closed successfully.

4(X'4') At least one data set (VSAM or non-VSAM) was not closed
successfully.

Example 1: CLOSE Macro
In this example DCB1 is closed.

 CLOSE (DCB1)

 Chapter 7. Non-VSAM Macro Descriptions 187

 CNTRL

Example 2: CLOSE Macro
In this example the DCB that register DCBPTR points to is closed.

 CLOSE ((DCBPTR),REWIND)

Example 3: CLOSE Macro
In this example a 31-bit parameter list with room for two DCBs or ACBs is
generated.

CLIST CLOSE (,,,),MF=L,MODE=31

CNTRL—Control Directly Allocated Input/Output Device (BSAM and
QSAM)

The CNTRL macro controls magnetic tape drives (BSAM only for a data set that is
not open for output), directly allocated card readers, IBM 3525 Card Punches (read
and print features), printers (BSAM and QSAM), and the IBM 3890 Document
Processor (QSAM only). For information on additional parameters for the CNTRL
macro for the 3890, see IBM 3890 Document Processor Machine and Programming
Description

The MACRF parameter of the DCB macro must specify a C. The CNTRL macro is
ignored for spooled SYSIN or SYSOUT data sets. For BSAM, all input and output
operations must be tested for completion before the CNTRL macro is issued. The
control facilities available are as follows:

Card Reader: Provides stacker selection, as follows:

QSAM:For unblocked records, issue a CNTRL macro after every input request. For
blocked records, issue a CNTRL macro after the last logical record on each card
retrieved. Whether reading blocked or unblocked records, do not issue a CNTRL
macro after a GET macro causes control to pass to the EODAD routine. The move
mode of the GET macro must be used, and the number of buffers (BUFNO field of
the DCB) must be 1. If a CLOSE macro is issued before the last card is read, the
operator should clear the reader before the device is used again.

BSAM:The CNTRL macro should be issued after every input request.

Printer: Provides line spacing or a skip to a specific carriage control channel. You
cannot use a CNTRL macro if carriage control characters are provided in the
record. If the printer contains the universal character set feature, data checks
should be blocked (OPTCD=U should not appear in the data control block).

Magnetic Tape: Provides method of forward spacing and backspacing (BSAM only
for a data set not open for output). If OPTCD=H is indicated in the data control
block, you can use the CNTRL macro to perform record positioning on VSE 3 tapes
that contain embedded checkpoint records. Embedded checkpoint records found
during the record positioning are bypassed and are not counted as blocks spaced
over. OPTCD=H must be specified in a job control language DD statement. The
CNTRL macro cannot be used to backspace VSE 7-track tapes written in data
convert mode that contain embedded checkpoint records (BSAM).

3 VSE (Virtual Storage Extended) tapes used to be called DOS tapes.

188 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 CNTRL

Note: Do not use the CNTRL macro with output operations on BSAM tape data
sets.

3525 Printing: Provides line spacing or a skip to a specific printing line on the
card. The card contains 25 printing lines; the odd-numbered lines 1 through 23
correspond to the printer skip channels 1 through 12 (see the SK parameter). For
additional information about 3525 printing operations, see Programming Support for
the IBM 3505 Card Reader and the IBM 3525 Card Punch

The CNTRL macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the CNTRL macro is:

dcb address—RX-Type Address or (2-12)
specifies the address of the data control block for the data set opened for the
online device. When issued in 31-bit addressing mode, the input DCB address
must be a clean 31-bit address.

SS,{1|2}
specifies the control function requested is stacker selection on a card reader.
Either 1 or 2 must be coded to indicate which stacker is selected.

SP,{1|2|3}
specifies the control function requested is printer line spacing or 3525 card
punch line spacing. Either 1, 2, or 3 must be coded to indicate the number of
spaces for each print line.

SK,{1|2|...|11|12}
specifies the control function requested is a skip operation on the printer or
3525 card punch, print feature. A number (1 through 12) must be coded to
indicate the channel or print line to which the skip is to be taken.

BSM
specifies the control function requested is to backspace the magnetic tape past
a tape mark, then forward space over the tape mark.

FSM
specifies the control function requested is to forward space the magnetic tape
over a tape mark, then backspace past the tape mark.

BSR
specifies the control function requested is to backspace the magnetic tape the
number of blocks indicated in number-of-blocks.

FSR
specifies the control function requested is to forward space the magnetic tape
the number of blocks indicated in number-of-blocks.

[label] CNTRL dcb address
{,SS,{1|2}}
{,SP,{1|2|3}}
{,SK,{1|2| ...|11|12}}
{,BSM}
{,FSM}
{,BSR[, number of blocks]}
{,FSR[,number of blocks]}

 Chapter 7. Non-VSAM Macro Descriptions 189

 CNTRL

number of blocks—symbol, decimal digit, absexp, or (2-12)
specifies the number of blocks to backspace (see BSR parameter) or
forward space (see FSR parameter) the magnetic tape. The maximum
value that can be specified is 32767. If number-of-blocks is omitted, 1 is
assumed.

If the forward space or backspace operation is not completed successfully, control
is passed to the error analysis (SYNAD) routine. If no SYNAD exit routine is
designated, the task is abnormally terminated.

For more information on register contents when control is passed to the error
analysis routine, see DFSMS/MVS Using Data Sets. If a tape mark is found for
BSR or FSR, control is returned to the processing program, and register 15
contains a count of the uncompleted forward spaces or backspaces. If the
operation is completed normally, register 15 contains the value zero. If CNTRL
encounters a tape mark, it moves the tape back over the tape mark before
returning to the user.

190 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BDAM)

DCB—Construct a Data Control Block (BDAM)
Use of the DCB (BDAM) macro is not recommended. We recommend you use
VSAM instead.

The data control block for a basic direct access method (BDAM) data set is
constructed during assembly of the problem program. You must code DSORG and
MACRF in the DCB macro, but the other parameters can be supplied to the DCB
from the DD statement or an existing data set label (DSCB). If more than one of
these sources specifies information for a particular field, the order of priority is the
DCB macro, DD statement, and data set label. Each BDAM DCB parameter
description contains a heading, “Source.” The information under this heading
describes the sources that can supply the parameter.

Each reference to a DCB OPEN exit routine applies also to a JFCBE exit routine.

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it. Except for the
DCBE, all areas that the DCB refers to, such as EXLST and EODAD, must be
below the 16MB line.

The format of the DCB macro for BDAM is:

Note: When creating a DCB to open a data set allocated to an SMS-managed
volume, do not specify values that would change the data set to a type
which cannot be SMS-managed, such as DSORG=DAU.

BDAM supports the following DCB parameters:

BFALN={F|D }
specifies the boundary alignment for each buffer in the buffer pool. You can
specify the BFALN parameter when (1) BSAM is being used to allocate a direct
data set and buffers are acquired automatically, (2) when an existing BDAM
data set is being processed and dynamic buffering is requested, or (3) when

[label] DCB [BFALN={F|D }]
[,BFTEK=R]
[,BLKSIZE= absexp]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,DDNAME=symbol] 1
,DSORG={DA|DAU}
[,EXLST= relexp]
[,KEYLEN= absexp]
[,LIMCT=absexp]
,MACRF={{(R{K[I]|I}[X][S][C])}
 {(W{A[K][I]|K[I]|I}[C])}
 {(R{K[I]|I}[X][S][C],W{A[K][I]|K[I]|I}[C])}}
[,OPTCD={[R|A][E][F][W]}]
[,RECFM={U|V[S|BS]|F[T]}]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

 Chapter 7. Non-VSAM Macro Descriptions 191

 DCB (BDAM)

the GETPOOL macro is used to construct the buffer pool. If BFALN is omitted,
the system provides doubleword alignment for each buffer. You can specify:

F specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D specifies that each buffer is on a doubleword boundary.

If you use the BUILD macro to construct the buffer pool, or if the problem
program controls all buffering, the problem program must provide the area for
the buffers and control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFALN and BFTEK are specified, they must
be supplied from the same source.

BFTEK=R
specifies that the data set is allocated for or contains variable-length spanned
records. You can code BFTEK=R only when the record format is specified as
RECFM=VS.

When variable-length spanned records are written, the data length can exceed
the total capacity of a single track on the direct access storage device being
used, or it can exceed the remaining capacity on a given track. The system
divides the data block into segments (if necessary), writes the first segment on
a track, and writes the remaining segments on the following track(s).

When a variable-length spanned record is read, the system reads each
segment and assembles a complete data block in the buffer designated in the
area address of a READ macro.

Note: Variable-length spanned records can also be read using BSAM. When
BSAM is used to read a BDAM variable-length spanned record, the
record is read one segment at a time, and the problem program must
assemble the segments into a complete data block. This operation is
described in the section for the BSAM DCB macro.

Source: BFTEK can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFTEK and BFALN are specified, they must
be supplied from the same source.

BLKSIZE= absexp (maximum value is 32760)
specifies the length, in bytes, of each data block for fixed-length records. Or,
specifies the maximum length, in bytes, of each data block for variable-length
or undefined-length records. If keys are used, the length of the key is not
included in the value specified for BLKSIZE.

The actual value that you can specify in BLKSIZE depends on the record
format and the type of direct access storage devices being used. If
variable-length spanned records are used, the value specified in BLKSIZE can
be up to the maximum. For all other record formats (F, V, VBS, and U), the
maximum value that can be specified in BLKSIZE is determined by the track
capacity of a single track on the direct access storage device being used.
Device capacity for direct access storage devices is described in Appendix E,
“Selecting Logical Record Lengths and Block Sizes” on page 413. For
additional information about space allocation, see DFSMS/MVS Using Data
Sets.

192 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BDAM)

Source: BLKSIZE can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data
set. Block size can also be derived from the JCL keyword LIKE. See OS/390
MVS JCL Reference and OS/390 MVS JCL User's Guide for more information
on LIKE.

BUFCB= relexp
specifies the address of the buffer pool control block in a buffer pool
constructed by a BUILD macro. The buffer pool must reside below the 16MB
line.

If the buffer pool is constructed automatically, dynamically, or by a GETPOOL
macro, you do not need to use BUFCB because the system places the address
of the buffer pool control block into the data control block. Also, if the problem
program is to control all buffering, omit BUFCB.

Source: BUFCB can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine. If the problem program
is to control all buffering (and BUFNO is not supplied by any source), then
BUFCB can be supplied any time before it is needed. You do not have to have
a buffer pool.

BUFL=absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the buffers
are acquired automatically (create BDAM) or dynamically (existing BDAM).

When buffers are acquired automatically (create BDAM), the BUFL parameter
is optional. If specified, the value must be at least as large as the sum of the
values specified for KEYLEN and BLKSIZE. If BUFL is omitted, the system
builds buffers with a length equal to the sum of the values specified in KEYLEN
and BLKSIZE.

You must specify BUFL when processing an existing direct data set with
dynamic buffering. Its value must be at least as large as the value specified for
BLKSIZE when the READ or WRITE macro specifies a key address, or the
value specified in BUFL must be at least as large as the sum of the values
specified in KEYLEN and BLKSIZE if the READ and WRITE macros specify
'S' for the key address.

You can omit BUFL if the buffer pool is constructed by a BUILD or GETPOOL
macro, or if the problem program controls all buffering.

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro, or the
number of buffers and segment work areas to be acquired automatically by the
system.

If the buffer pool is constructed by a BUILD macro or if buffers are acquired
automatically when BSAM is used to allocate a direct data set, you must
specify the number of buffers in BUFNO.

If dynamic buffering is requested when an existing direct data set is being
processed, BUFNO is optional; if omitted, the system acquires two buffers.

 Chapter 7. Non-VSAM Macro Descriptions 193

 DCB (BDAM)

If variable-length spanned records are being processed and dynamic buffering
is requested, the system also acquires a segment work area for each buffer. If
dynamic buffering is not requested, the system acquires the number of
segment work areas specified in BUFNO. If BUFNO is omitted when
variable-length spanned records are being processed and dynamic buffering is
not requested, the system acquires two segment work areas.

If the buffer pool is constructed by a GETPOOL macro or if the problem
program controls all buffering, you can omit BUFNO unless you need it to
acquire additional segment work areas for variable-length spanned records.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the data set being allocated or processed.

Source: DDNAME can be supplied in the DCB macro or can be moved into the
DCB by the problem program before an OPEN macro is issued to open the
data set.

DSORG={DA|DAU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. For example, if
actual device addresses are used to process a BDAM data set, the data set
can be unmovable. You can specify:

DA
specifies a direct organization data set.

DAU
specifies a direct organization data set containing location-dependent
information that would make it unmovable.

Note: A DSORG=DAU data set cannot be SMS-managed.

When a direct data set is allocated, the basic sequential access method
(BSAM) is used. You must code DSORG in the DCB macro as DSORG=PS or
PSU when the data set is allocated, and code the DCB subparameter in the
corresponding DD statement as DSORG=DA or DAU. This creates a data set
with a data set label identifying it as a direct data set.

Source: DSORG must be specified in the DCB macro. See the preceding
comment about creating a direct data set.

EXLST=relexp
specifies the address of the DCB exit list. The EXLST parameter is required if
the problem program processes user labels during the open or close routine, if
the data control block exit routine is used for additional processing, or if the
DCB ABEND exit is used for abend condition analysis.

| The exit list must reside below the line. For the functions, format, and
| requirements of exit list processing, see DFSMS/MVS Using Data Sets. Exit
| routines can reside above the 16 MB line if you use the technique described in
| Figure 30 on page 170.

194 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BDAM)

Source: EXLST can be supplied in the DCB macro or by the problem program
before the relevant function is needed.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of all keys used in the data set. When keys are
used, a key is associated with each data block in the data set. If the key length
is not supplied by any source, no input or output requests that require a key
can be specified in a READ or WRITE macro.

Source: KEYLEN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before the completion of the data
control block exit routine, or by an existing data set label. If KEYLEN=0 is
specified in the DCB macro, a special indicator is set in RECFM so that
KEYLEN cannot be supplied from the DCB subparameter of a DD statement or
data set label of an existing data set. KEYLEN=0 can be coded only in the
DCB macro and will be ignored if specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

LIMCT=absexp
specifies the number of blocks or tracks to be searched when the extended
search option (OPTCD=E) is requested.

When the extended search option is requested and relative block addressing is
used, the records must be fixed-length record format. The system converts the
number of blocks specified in LIMCT into the number of tracks required to
contain the blocks, then proceeds in the manner described below for relative
track addressing.

When the extended search option is requested and relative track addressing is
used (or the number of blocks has been converted to the number of tracks), the
system searches for two things: (1) the block specified in a READ or WRITE
macro (type DK), or (2) available space where it can add a block (WRITE
macro, type DA). The search is as follows:

1. The search begins at the track specified by the block address of a READ or
WRITE macro.

2. The search continues until the search is satisfied, the number of tracks
specified in LIMCT have been searched, or the entire data set has been
searched. If the search is not satisfied when the last track of the data set is
reached, the system continues the search by starting at the first track of the
data set if the EOF marker is on the last track allocated to the data set.
(This operation allows the number specified in LIMCT to exceed the size of
the data set, causing the entire data set to be searched.) You can ensure
that the EOF marker is on the last allocated track by determining the size
of the data set and allocating space in blocks, or by allocating space in
tracks and including the RLSE subparameter in the SPACE parameter of
the DD statement (RLSE specifies that all unused tracks be returned to the
system).

The problem program can change the DCBLIMCT field in the data control block
at any time, but, if the extended search option is used, the DCBLIMCT field
must not be zero when a READ or WRITE macro is issued.

 Chapter 7. Non-VSAM Macro Descriptions 195

 DCB (BDAM)

If the extended search option is not requested, the system ignores LIMCT, and
the search for a data block is limited to a single track.

Source: LIMCT can be supplied in the DCB macro, the DCB subparameter of a
DD statement, or by the problem program before the count is required by a
READ or WRITE macro.

MACRF={{(R{K[I]|I}[X][S][C])}
 {(W{A[K][I]|K[I]|I}[C])}
 {(R{K[I]|I}[X][S][C],W{A[K][I]|K[I]|I}[C])}}

specifies the type of macros (READ, WRITE, CHECK, and WAIT) used to
process the data set. MACRF also specifies the type of search argument and
BDAM functions used with the data set. When BSAM is used to create a direct
data set, the BSAM parameter MACRF=WL is specified. This special parameter
invokes the BSAM routine that can create a BDAM data set. You can specify
the following characters for BDAM:

A specifies that data blocks are added to the data set.

C specifies the CHECK macro is used to test for completion of read and write
operations. If C is not specified, WAIT macros must be used to test for
completion of read and write operations.

I specifies the search argument is the block identification portion of the data
block. If relative addressing is used, the system converts the relative
address to an actual address (MBBCCHHR) before the search.

K specifies the search argument is the key portion of the data block. The
location of the key to be used as a search argument is specified in a READ
or WRITE macro.

R specifies READ macros are used. READ macros can be issued when the
data set is opened for INPUT, OUTPUT, or UPDAT. R is required if the
OPEN option is INPUT or UPDAT. It has no effect if the OPEN option is
OUTPUT or EXTEND.

S specifies dynamic buffering is requested by specifying 'S' in the area
address parameter of a READ or WRITE macro.

W specifies WRITE macros are used. WRITE macros can be issued only
when the data set is opened for OUTPUT or UPDAT. W is required if the
OPEN option is OUTPUT. It has no effect if the OPEN option is INPUT.

X specifies READ macros request exclusive control of a data block. When
exclusive control is requested, the data block must be released by a
subsequent WRITE or RELEX macro.

Source: MACRF must be supplied in the DCB macro.

OPTCD={[R|A][E][F][W]}
specifies the optional services used with the direct data set. These options are
related to the type of addressing used, the extended search option, block
position feedback, and write-validity checking. You can code the following
characters in any order, in any combination, and without commas between
characters:

A specifies actual device addresses (MBBCCHHR) are provided to the
system when READ or WRITE macros are issued.

196 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BDAM)

E specifies the extended search option is used to locate data blocks or
available space where a data block can be added. When the extended
search option is specified, the number of blocks or tracks to be searched
must be specified in LIMCT. The extended search option is ignored if actual
addressing (OPTCD=A) is also specified. The extended search option
requires that the data set have keys and that the search be made by key
(by specifying DK in the READ or WRITE macro or DA in the WRITE
macro).

F specifies block position feedback requested by a READ or WRITE macro is
to be in the same form originally presented to the system in the READ or
WRITE macro. If the F parameter is omitted, the system provides feedback,
when requested, as an 8-byte actual device address. (Feedback is always
provided if exclusive control is requested.)

R specifies relative block addresses (as 3-byte binary numbers) are provided
to the system when a READ or WRITE macro is issued.

W specifies the system is to perform a validity check for each record written.

Note: Relative track addressing can only be specified by omitting both A and
R from OPTCD. If you want to specify relative track addressing after
your data set has been accessed using another addressing scheme
(OPTCD=A or OPTCD=R), you should either specify a valid OPTCD
subparameter (E, F, or W) in the DCB macro or DD statement when
you reopen your data set, or zero out the OPTCD=A or OPTCD=R bits
in the data control block exit routine. Note that the first method prevents
the open routines from merging any of the other OPTCD bits from the
format-1 DSCB in the DCB. Both methods update the OPTCD bits in
the DSCB if the open is for OUTPUT, OUTIN, or UPDAT.

Source: OPTCD can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the DCB
open exit routine.

RECFM={U|V[S|BS]|F[T]}
specifies the record format and characteristics of the data set being allocated or
processed. You can specify the following characters. (If the optional characters
are coded, they must be coded in the order shown above).

B specifies the data set contains blocked records. The record format
RECFM=VBS is the only combination in which B can be specified.
RECFM=VBS does not cause the system to process spanned records. The
problem program must block and segment the records. RECFM=VBS is
treated as a variable-length record by BDAM.

F specifies the data set contains fixed-length records.

S specifies the data set contains variable-length spanned records when it is
coded as RECFM=VS. When RECFM=VBS is coded, the records are
treated as variable-length records, and the problem program must block
and segment the records.

T specifies track overflow is used with the data set. Track overflow allows a
record to be partially written on one track and the remainder is written on
the following track (if required).

Note: This is an obsolete option. The system ignores it.

 Chapter 7. Non-VSAM Macro Descriptions 197

 DCB (BISAM)

U specifies the data set contains undefined-length records.

V specifies the data set contains variable-length records.

Source: RECFM can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, the problem program before completion of the data control
block exit routine, or by the data set label of an existing data set.

Record format can be derived from the data class associated with the data set.
Record format can also be derived from the JCL keyword LIKE. However, if
RECFM is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

SYNAD=relexp
specifies the address of the error analysis routine to be given control when an
uncorrectable input/output error occurs. The entry point of this SYNAD routine
must reside below the line. The contents of the registers when the error
analysis routine is given control are described in “Status Information Following
an Input/Output Operation” on page 393.

The error analysis routine must not use the save area pointed to by register 13.
The system does not restore registers when it regains control from the error
analysis routine. The error analysis routine can issue a RETURN macro that
uses the address in register 14 to return control to the system. When control is
returned in this manner, the system returns control to the problem program and
proceeds as though no error had been found. When a direct data set is being
created, a return from the error analysis routine to the system causes abnormal
end of the task.

When you issue a CHECK macro, the SYNAD routine receives control if an I/O
error occurred. If SYNAD is omitted, the task is abnormally terminated if you
issue a CHECK macro and it finds an uncorrectable I/O error.

SYNAD receives control in the addressing mode in which the CHECK macro
was issued. On return from a SYNADAF or SYNADRLS macro issued in the
SYNAD routine, the high order byte of register 15 will be unpredictable.
Therefore, callers of SYNADAF or SYNADRLS in 31-bit addressing mode must
either not use register 15 as a base register or restore the high order bytes on
return from SYNADAF or SYNADRLS.

Source: SYNAD can be supplied in the DCB macro or by the problem
program. The problem program can also change the error routine address at
any time.

DCB—Construct a Data Control Block (BISAM)
Use of the DCB (BISAM) macro is not recommended. We recommend you use
VSAM instead.

The data control block for a basic indexed sequential access method (BISAM) data
set is constructed during assembly of the problem program. You must code
DSORG and MACRF in the DCB macro, but the other DCB parameters can be
supplied to the data control block from other sources. Each BISAM DCB parameter
description contains a heading, “Source.” The information under this heading
describes the sources that can supply the parameters. Each reference to a DCB
OPEN exit routine applies also to a JFCBE exit routine.

198 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BISAM)

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it.

Note: You cannot use a BISAM DCB to open a data set allocated to an
SMS-managed volume.

The format of the DCB macro for BISAM is:

BISAM supports the following DCB parameters:

BFALN={F|D }
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is acquired for use with dynamic buffering or when the buffer pool is
constructed by a GETPOOL macro. If BFALN is omitted, the system provides
doubleword alignment for each buffer. You can specify:

F specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D specifies that each buffer is on a doubleword boundary.

If the BUILD macro is used to construct the buffer pool, or if the problem
program controls all buffering, the problem program must provide an area for
the buffers and control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFCB= relexp
specifies the address of the buffer pool control block when the buffer pool is
constructed by a BUILD macro.

You can omit BUFCB if you request dynamic buffering or use the GETPOOL
macro to construct the buffer pool, because the system places the address of
the buffer pool control block into the data control block. Also, if the problem
program is to control all buffering, omit BUFCB.

[label] DCB [BFALN={F|D }]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,DDNAME=symbol] 1
,DSORG=IS
[,EXLST= relexp]
,MACRF={{(R[S][C])}
 {(W{U[A]|A}[C])}
 {(R[U[S]|S][C],W{U[A]|A}[C])}}
[,MSHI=relexp]
[,MSWA= relexp]
[,NCP=absexp]
[,OPTCD={([L][R][W])}]
[,SMSI=absexp]
[,SMSW=absexp]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

 Chapter 7. Non-VSAM Macro Descriptions 199

 DCB (BISAM)

Source: BUFCB can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool to be constructed
by a BUILD or GETPOOL macro. When the data set is opened, the system
computes the minimum buffer length required and verifies that the length in the
buffer pool control block is equal to or greater than the minimum length
required. The system then inserts the computed length into the BUFL field of
the data control block.

If dynamic buffering is requested, the system computes the buffer length
required, and BUFL is not required.

If the problem program controls all buffering, BUFL is not required. However,
an indexed sequential data set requires additional buffer space for system use.
For a description of the buffer length required for various ISAM operations, see
DFSMS/MVS Using Data Sets.

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers requested for use with dynamic buffering, or the
number of buffers to be constructed by a BUILD macro. If dynamic buffering is
requested but BUFNO is omitted, the system automatically acquires two buffers
for use with dynamic buffering.

If the GETPOOL macro is used to construct the buffer pool, BUFNO is not
required.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the indexed sequential data set being allocated or
processed.

Source: DDNAME can be supplied in the DCB macro or by the problem
program before an OPEN macro is issued to open the data set.

DSORG=IS
specifies the indexed sequential organization of the data set. IS is the only
combination of characters that can be coded for BISAM.

Source: Unless it is for a data set passed from a previous job step, DSORG
must be coded in the DCB macro and in the DCB subparameter of a DD
statement. In this case, DSORG can be omitted from the DD statement.

EXLST=relexp
specifies the address of the DCB exit list. EXLST is required only if the problem
program uses the data control block exit routine for additional processing.

For the functions, format, and requirements for exit list processing, see
DFSMS/MVS Using Data Sets. The exit list must reside below the line.

Source: EXLST can be supplied in the DCB macro or by the problem program
before the relevant function is needed.

200 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BISAM)

MACRF={{(R[S][C])}
 {(W{U[A]|A}[C])}

 {(R[U[S]|S][C],W{U[A]|A}[C])}}
specifies the type of macros (READ, WRITE, CHECK, WAIT, and FREEDBUF)
and type of processing (add records, dynamic buffering, and update records) to
be used with the data set being processed. You can code the parameter in any
of the combinations shown above. The following characters can be coded for
BISAM:

A specifies new records are to be added to the data set. This character must
be coded if WRITE KN macros are used with the data set.

C specifies the CHECK macro is used to test I/O operations for completion. If
C is not specified, WAIT macros must be used to test for completion of I/O
operations.

R specifies READ macros are to be used. R is required if the OPEN option is
INPUT or UPDAT. It has no effect if the OPEN option is OUTPUT or
EXTEND.

S specifies dynamic buffering is requested in READ macros. Do not specify S
if the problem program provides the buffer pool.

U specifies records in the data set are to be updated in place. If U is coded in
combination with R, it must also be coded in combination with W. For
example, MACRF=(RU,WU).

W specifies WRITE macros are to be used. W is required if the OPEN option
is OUTPUT. It has no effect if the OPEN option is INPUT.

Source: MACRF must be coded in the DCB macro.

MSHI=relexp
specifies the address of the storage area used to contain the highest-level
master index for the data set. The system uses this area to reduce the search
time required to find a given record in the data set. MSHI is coded only when
SMSI is coded.

Source: MSHI can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

MSWA=relexp
specifies the address of the storage work area to be used by the system when
new records are being added to the data set. This parameter is optional, but
the system acquires a minimum-size work area if the parameter is omitted.
MSWA is coded only when the SMSW parameter is coded.

Processing efficiency can be increased if more than a minimum-size work area
is provided. For more detailed information about work area size, see
DFSMS/MVS Using Data Sets.

Source: MSWA can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

NCP=absexp (maximum value is 99)
specifies the maximum number of READ and WRITE macros issued before the
first CHECK (or WAIT) macro is issued to test for completion of the I/O
operation. The maximum number can be less than 99, depending on the
amount of virtual storage available below the line in the address space. If NCP

 Chapter 7. Non-VSAM Macro Descriptions 201

 DCB (BISAM)

is omitted, 1 is assumed. If dynamic buffering is used, the value specified for
NCP must not exceed the number of buffers specified in BUFNO.

Source: NCP can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block open exit routine.

OPTCD=([L][R][W])
specifies the optional services performed by the control program when creating
or updating an indexed sequential data set. You must request all optional
services by one method. That is, by the data set label of an existing data set,
this macro, or the DD statement on the DCB parameter. However, it can be
modified by the problem program. You can code the following characters in any
order, in any combination, and without commas between characters:

L specifies the control program delete records that have a first byte of X'FF'.
(These records can be deleted when space is required for new records. To
use the delete option, the relative key position (RKP) must be greater than
0 for fixed-length records and greater than 4 for variable-length records.)

R specifies the control program place reorganization statistics in certain fields
of the data control block. The problem program can analyze these statistics
to determine when to reorganize the data set. If OPTCD is omitted, the
reorganization statistics are automatically provided. However, if you use
OPTCD, you must specify OPTCD=R to get the reorganization statistics.

W specifies a validity check for write operations on direct access storage
devices.

SMSI=absexp (maximum value is 65535)
specifies the length, in bytes, required to contain the highest-level master index
for the data set being processed. Look at the DCBNCRHI field of the data
control block to determine the size required. When an indexed sequential data
set is created (with QISAM), the size of the highest-level index is inserted into
the DCBNCRHI field. If the value specified in SMSI is less than the value in the
DCBNCRHI field, the task is abnormally terminated.

Source: SMSI can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

SMSW=absexp (maximum value is 65535)
specifies the length, in bytes, of a work area used by BISAM. This parameter is
optional, but the system acquires a minimum-size work area if the parameter is
omitted. Code SMSW together with MSWA. If you code SMSW but the size you
specify is less than the minimum required, the task is abnormally terminated.
DFSMS/MVS Using Data Sets describes the methods of calculating the size of
the work area.

If unblocked records are used, the work area must be large enough to contain
all the count fields (8 bytes each), key fields, and data fields contained on one
direct access storage device track.

If blocked records are used, the work area must be large enough to contain all
the count fields (8 bytes each) and data fields contained on one direct access
storage device track plus additional space for one logical record (LRECL
value).

202 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BPAM)

Source: SMSW can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

SYNAD=relexp
specifies the address of the error analysis routine given control when an
uncorrectable input/output error occurs. The entry point of this SYNAD routine
must reside below the line. The contents of the registers when the error
analysis routine is given control are described in “Status Information Following
an Input/Output Operation” on page 393.

The error analysis routine must not use the save area pointed to by register 13.
The system does not restore registers when it regains control from the error
analysis routine. The error analysis routine can issue a RETURN macro that
uses the address in register 14 to return control to the system. When control is
returned in this manner, the system returns control to the problem program and
proceeds as though no error had been found. If the error analysis routine
continues processing, the results are unpredictable.

If you have issued the CHECK macro, the SYNAD routine receives control
when an I/O error occurs. If SYNAD is omitted, the task is abnormally
terminated when an uncorrectable input/output error occurs.

Source: SYNAD can be supplied in the DCB macro or by the problem
program. The problem program can also change the error analysis routine
address at any time.

DCB—Construct a Data Control Block (BPAM)
The data control block for a basic partitioned access method (BPAM) data set is
constructed during assembly of the problem program. You must code the DSORG
and MACRF parameters in the DCB macro, but the other DCB parameters can be
supplied from other sources. Each of the BPAM DCB parameter descriptions
contains a heading, “Source.” The information under this heading describes the
sources that can supply the parameter to the data control block. Each reference to
a DCB OPEN exit routine applies also to a JFCBE exit routine. The DCB fields that
you can test or set are described in Appendix B, “Non-VSAM Control Blocks” on
page 393.

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it.

The format of the DCB macro for BPAM is:

 Chapter 7. Non-VSAM Macro Descriptions 203

 DCB (BPAM)

Note: When creating a DCB to open a data set allocated to an SMS-managed
volume, do not specify values that would change the data set to a type
which cannot be SMS-managed, such as DSORG=POU. Refer to
DFSMS/MVS Using Data Sets for further information.

When you create or process a partitioned data set or PDSE, you can specify the
following parameters in the DCB macro:

BFALN={F|D }
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro. If BFALN is
omitted, the system provides doubleword alignment for each buffer. You can
specify the following characters in BFALN:

F specifies each buffer is aligned on a fullword boundary that is not also a
doubleword boundary.

D specifies each buffer is aligned on a doubleword boundary.

If the BUILD macro is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for
the buffers and control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

BLKSIZE= absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, of each data block for fixed-length unblocked
records. Or, it specifies the maximum length, in bytes, for any other record
format. If keys are used, the length of the key is not included in the value
specified for BLKSIZE.

[label] DCB [BFALN={F|D }]
[,BLKSIZE= absexp]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,DCBE= relexp] 1
[,DDNAME=symbol] 1
,DSORG={PO|POU}
[,EODAD= relexp]
[,EXLST= relexp]
[,KEYLEN= absexp]
[,LRECL= absexp]
,MACRF={(R|W|R,W)} 1
[,NCP=absexp]
[,OPTCD={C|W[C]}
[,RECFM={{U[T][A|M]}
 {V[B[T]|T][A|M]}
 {F[B[T]|T][A|M]}}]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

204 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BPAM)

The actual block size you can specify depends on the record format and type
of direct access storage devices being used. When PDSEs are being
processed, the block size can be up to the maximum. If PDSEs are not used,
the maximum block size is determined by the track capacity of a single track on
the direct access storage devices being used. Device capacity for direct access
storage devices is described in Appendix E, “Selecting Logical Record Lengths
and Block Sizes” on page 413. For additional information about space
allocation, see DFSMS/MVS Using Data Sets .

For fixed-length records, the value specified in BLKSIZE should be a multiple of
the value specified for the logical record length (LRECL).

For fixed-length unblocked records, LRECL must equal BLKSIZE (if LRECL is
specified).

For variable-length records, the value specified in BLKSIZE must include the
maximum logical record length (up to 32756 bytes) plus 4 bytes for the block
descriptor word (BDW).

For undefined-length records, the value specified for BLKSIZE can be altered
by the problem program when the actual length becomes known to the problem
program. The value can be inserted into the DCBBLKSI field of the data control
block or specified in the length parameter of a READ or WRITE macro.

Processing PDSEs: The system reblocks PDSE records into its own internal
format when the data set is written, and reconstructs the blocks using the block
size from the DCB when the data set is read. For fixed-length blocked records,
the value specified in BLKSIZE must be a multiple of the value in LRECL (if
LRECL is specified). The LRECL value must be available to OPEN when the
PDSE is open for output.

When reading a PDSE directory using fixed-length blocked records, you can
specify a BLKSIZE of 256 or greater (the LRECL is ignored).

System-Determined Block Size: IBM recommends that you not specify block
size unless the record format is U. This makes your program less dependent on
the physical characteristics of the device although a PDSE block size has little
to do with device characteristics. If the block size is not specified when the data
set is allocated, and the LRECL and RECFM are known, the system derives an
optimum block size for the data set. This system-determined block size is
retained in the data set label. When the data set is opened for output, OPEN
checks the block size in the data set label. If it is a system-determined block
size, and the LRECL or RECFM have changed from those specified in the data
set label, OPEN redetermines an optimum block size for the data set.

Source: BLKSIZE can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, by the data set label of an existing data set,
or by the system determining a value for a new data set. The system does not
copy BLKSIZE when you code the JCL keyword LIKE. It derives the BLKSIZE
from RECFM and LRECL which can be copied. For more information on LIKE,
see OS/390 MVS JCL Reference and OS/390 MVS JCL User's Guide.

BUFCB= relexp
specifies the address of the buffer pool control block that you have constructed
by a BUILD macro.

If the buffer pool is constructed automatically or by a GETPOOL macro, you
can omit the BUFCB parameter because the system places the address of the

 Chapter 7. Non-VSAM Macro Descriptions 205

 DCB (BPAM)

buffer pool control block into the data control block. Also, if the problem
program is to control all buffering, omit the BUFCB parameter. A buffer pool
control block resides below the 16MB line.

Source: BUFCB can be supplied in the DCB macro or by the problem program
before issuing a GETBUF macro.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the buffer
pool is acquired automatically. If BUFL is omitted and the buffer pool is
acquired automatically, the system acquires buffers with a length equal to the
sum of the values specified in KEYLEN and BLKSIZE. If the problem program
requires longer buffers, specify BUFL.

If the problem program controls all buffering, BUFL is not required.

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro. Or, it
specifies the number of buffers to be acquired automatically by the system.

If the problem program controls all buffering or if the buffer pool is constructed
by a GETPOOL macro, omit BUFNO.

The default is 0, meaning the system does not acquire buffers automatically. If
the system acquires buffers for BPAM, they reside below the 16MB line. You
may obtain each buffer by issuing a GETBUF macro.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

DCBE=relexp
specifies the address of a DCB Extension (DCBE). The DCBE may reside
above the 16MB line. You may assemble a DCB and DCBE in a program that
resides above the line if the DCB is copied below the line before opening the
copy.

If the DCBE is specified, it must be specified before issuing the OPEN macro.
Like the DCB, the DCBE must exist until the data set is closed. Otherwise,
there may be unpredictable results.

Only one open DCB at a time can refer to a particular DCBE. After a DCB is
successfully closed, a different DCB referring to the DCBE may be opened.

The DCBE is not required for any data set.

If a DCB points to a DCBE, the flags DCBH0 and DCBH1 are both set on. The
pointer to the DCBE is stored at offset +0 in the DCB (and replaces the field
DCBRELAD). If a DCBE exists, data that would be stored at DCBRELAD is
stored in the DCBE (DCBERELA). If a DCBE does not exist, DCBRELAD
continues to be located at offset +0 in the DCB.

Source: The DCBE can be supplied in the DCB macro or by the problem
program before issuing the OPEN macro.

206 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BPAM)

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the data set being allocated or processed.

Source: DDNAME can be supplied in the DCB macro or by the problem
program before an OPEN macro is issued to open the data set.

DSORG={PO|POU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. You can specify:

PO
specifies a partitioned data set organization.

POU
specifies a partitioned data set organization and that the data set contains
location-dependent information that makes it unmovable.

Notes:

1. Unmovable data sets cannot be SMS-managed. PDSEs cannot be
unmovable data sets.

2. If BSAM or QSAM is used to add or retrieve a single member of a
partitioned data set, specify DSORG=PS or DSORG=PSU in the BSAM or
QSAM DCB. To retrieve a single member of a PDSE, specify DSORG=PS
in the BSAM or QSAM DCB. The name of the member being processed in
this manner is supplied in a DD statement.

Source: DSORG parameter must be specified in the DCB macro.

EODAD=relexp
specifies the address of the routine given control when the end of the input
member is reached. Control is given to this routine when a CHECK macro is
issued and the end of the member is reached. If the end of the member is
reached but no EODAD address was supplied in the DCB or DCBE, the task is
abnormally terminated. The EODAD routine (whether it is specified in the DCBE
or DCB) receives control in the addressing mode in which the CHECK macro
was issued. For additional information on the EODAD routine, see
DFSMS/MVS Using Data Sets. This end-of-data routine entry point specified in
the DCB must reside below the line. If you wish the entry point to reside above
the line, use the EODAD parameter of the DCBE macro. See the EODAD
parameter description for the DCBE macro, “DCBE—(BSAM, QSAM, and
BPAM)” on page 261.

Source: EODAD can be supplied in the DCB macro or by the problem program
before the end of the member is reached.

EXLST=relexp
specifies the address of the DCB exit list. The EXLST parameter is required if
the problem program uses the data control block exit routine for additional
processing or if the DCB ABEND exit is used for abend condition analysis.

| The exit list must reside below the line. For the functions, format, and
| requirements of exit list processing, see DFSMS/MVS Using Data Sets. Exit
| routines can reside above the 16 MB line if you use the technique described in
| Figure 30 on page 170.

 Chapter 7. Non-VSAM Macro Descriptions 207

 DCB (BPAM)

Source: EXLST can be supplied in the DCB macro or by the problem program
before the relevant function is needed.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of the key associated with each data block in the
direct access storage device data set. If the key length is not supplied from any
source by the end of the data control block exit routine, a key length of zero
(no keys) is assumed.

A nonzero key length is allowed for input from a PDSE, but is not allowed for
output to a PDSE. You can use keys for reading PDSE members, but not for
writing PDSE members.

Source: KEYLEN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before the completion of the data
control block exit routine, or by the data set label of an existing data set. If
KEYLEN=0 is specified in the DCB macro, a special indicator is set in RECFM
so that KEYLEN cannot be supplied from the DCB subparameter of a DD
statement or data set label of an existing data set. KEYLEN=0 can be coded
only in the DCB macro and is ignored if specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

LRECL=absexp (maximum value is 32760)
specifies the length, in bytes, for fixed-length records. Or, it specifies the
maximum length, in bytes, for variable-length and undefined-length records.
The value specified in LRECL cannot exceed the value specified in BLKSIZE.

For PDSEs containing fixed-length blocked records, you must specify LRECL
when opened for output. For other types of data sets, you can omit LRECL for
BSAM; the system uses the value specified in BLKSIZE. If you want the system
to determine the optimum block size for the data set, you must code LRECL. If
the LRECL value is coded, it is coded as follows:

Unblocked fixed-length records: the value specified in LRECL must be equal to
the value specified in BLKSIZE.

Blocked fixed-length records: the value specified in LRECL must be evenly
divisible into the value specified in BLKSIZE. However, except for PDSEs, the
LRECL parameter is not checked for validity.

Variable-length records: the value specified in LRECL must include the
maximum data length (up to 32752 bytes) plus 4 bytes for the record-descriptor
word (RDW).

Undefined-length records: omit LRECL; the actual length is supplied
dynamically in a READ/WRITE macro. When an undefined-length record is
read, the actual length of the record is returned by the system in the
DCBLRECL field of the data control block.

Source: LRECL can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before completion of the data
control block exit routine, or by the data set label of an existing data set.

Record length can be derived from the data class associated with the data set.
Record length can also be derived from the JCL keyword LIKE. For
undefined-length records, if LRECL is specified in the DCB macro, it overrides

208 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BPAM)

the value derived from data class or LIKE. For more information, see OS/390
MVS JCL Reference.

MACRF={(R|W|R,W)}
specifies the type of macros (READ, WRITE, and NOTE/POINT) used to
process the data set. You can specify the following characters for BPAM:

R specifies that READ macros are to be used. This subparameter
automatically allows you to use both the NOTE and POINT macros with the
data set. R is required if the OPEN option is INPUT or UPDAT. It has no
effect if the OPEN option is OUTPUT or EXTEND.

W specifies that WRITE macros are to be used. This subparameter
automatically allows you to use both the NOTE and POINT macros with the
data set. W is required if the OPEN option is OUTPUT or EXTEND. It has
no effect if the OPEN option is INPUT. W may be specified if the OPEN
option is UPDAT.

All BPAM READ and WRITE macros issued must be tested for completion
using a CHECK macro. MACRF does not require any coding to specify that a
CHECK macro is to be used.

Source: MACRF must be specified in the DCB macro.

NCP=absexp (maximum value is 255)
specifies the maximum number of READ and WRITE macros issued before the
first CHECK macro is issued to test completion of the I/O operation. In an
address space that is constrained for storage below the line, requesting too
large a number may result in abnormal termination of the program. If NCP is
omitted, 1 is assumed unless you coded the MULTSDN parameter on the
DCBE macro.

Source: NCP can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block open exit routine.

OPTCD={C|W[C]}
specifies optional services performed by the system.

C specifies chained scheduling is used. BPAM ignores this obsolete option.

W specifies that the system is to perform a validity check for each block
written.

Note: OPTCD=W is ignored for PDSEs.

Source: OPTCD can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before an OPEN macro is
issued to open the data set. However, all optional services must be requested
from the same source.

RECFM={{U[T][A|M]}
 {V[B[T]|T][A|M]}
 {F[B[T]|T][A|M]}}

specifies the record format and characteristics of the data set being allocated or
processed. All the record formats shown above can be specified, but in those
record formats that show blocked records, the problem program must perform
the blocking and deblocking of logical records. BPAM recognizes only data
blocks. You can specify:

 Chapter 7. Non-VSAM Macro Descriptions 209

 DCB (BPAM)

A specifies the records in the data set contain ISO/ANSI control characters.
For a description of control characters, see Appendix C, “Control
Characters” on page 407.

B specifies the data set contains blocked records.

F specifies the data set contains fixed-length records.

M specifies the records in the data set contain machine code control
characters. For a description of control characters, see Appendix C,
“Control Characters” on page 407.

T specifies track overflow is used with the data set. Track overflow allows a
record to be written partially on one track of a direct access storage device
and the remainder of the record written on the following track (if required).

Note: This is an obsolete option. The system ignores it.

U specifies the data set contains undefined-length records.

V specifies the data set contains variable-length records.

Source: RECFM can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before completion of the data
control block exit routine, or by the data set label of an existing data set.

Record format can be derived from the data class associated with the data set.
Record format can also be derived from the JCL keyword LIKE. However, if
RECFM is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

SYNAD=relexp
specifies the address of the error analysis (SYNAD) routine to be given control
when an uncorrectable input/output error occurs. The entry point of this SYNAD
routine must reside below the line. If you wish the entry point to reside above
the line, use the SYNAD parameter of the DCBE macro. The contents of the
registers when the error analysis routine is given control are described in
“Status Information Following an Input/Output Operation” on page 393.

The error analysis routine must not use the save area pointed to by register 13.
The system does not restore registers when it regains control from the error
analysis routine. The error analysis routine can issue a RETURN macro that
uses the address in register 14 to return control to the system. If control is
returned in this manner, the system returns control to the problem program and
proceeds as though no error had been found.

When you issue a CHECK macro, the SYNAD routine receives control after an
I/O error has occurred. (I/O errors occur asynchronously with your program. As
the name SYNAD implies, this routine is entered synchronously with your
program when it issues a CHECK macro.) If SYNAD is omitted in the DCB and
DCBE, the task is abnormally terminated when you issue a CHECK and an
uncorrectable input/output error occurs.

SYNAD receives control in the addressing mode in which the CHECK macro
was issued. On return from a SYNADAF or SYNADRLS macro issued in the
SYNAD routine, the high order byte of register 15 will be unpredictable.
Therefore, callers of SYNADAF or SYNADRLS in 31-bit addressing mode must
either not use register 15 as a base register or restore the high order bytes on
return from SYNADAF or SYNADRLS.

210 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BPAM)

Source: SYNAD can be supplied in the DCB macro or by the problem
program. The problem program can also change the error routine address at
any time.

 Chapter 7. Non-VSAM Macro Descriptions 211

 DCB (BSAM)

DCB—Construct a Data Control Block (BSAM)
The data control block for a basic sequential access method (BSAM) data set is
constructed during assembly of the problem program. You must code DSORG and
MACRF in the DCB macro, but the other DCB parameters can be supplied to the
data control block from other sources. Each DCB parameter description contains a
heading, “Source.” The information under this heading describes the sources that
can supply the parameters. Each reference to a DCB OPEN exit routine also
applies to a JFCBE exit routine.

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it.

The format of the DCB macro for BSAM is:

212 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

Note: When creating a DCB to open a data set allocated to an SMS-managed
volume, do not specify values that would change the data set to a type
which cannot be SMS-managed, such as DSORG=PSU.

[label] DCB [BFALN={F|D }]
[,BFTEK=R]
[,BLKSIZE= absexp]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,BUFOFF={ absexp|L}]
[,DCBE= relexp] 1
[,DDNAME=symbol] 1
[,DEVD={{DA
 [,KEYLEN= absexp]}
 {TA
 [,DEN={1|2|3|4}]
 [,TRTCH={C|E|ET|T}|{COMP|NOCOMP}]}
 {PR
 [,PRTSP={0|1 |2|3}]}
 {PC
 [,MODE=[C|E][R]]
 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|
 RW[T]|RWP[XT][D]|W[T]}]
 {RD
 [,MODE=[C|E][O|R]]
 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|
 RW[T]|RWP[XT][D]|W[T]}]}]
,DSORG={PS|PSU} 1
[,EODAD= relexp]
[,EXLST= relexp]
[,KEYLEN= absexp]
[,LRECL={ absexp|X}]
,MACRF={{(R[C|P])}
 {(W[C|P|L])}
 {(R[C|P],W[C|P])}} 1

[,NCP=absexp]
[,OPTCD={{B}
 {T}
 {U[C]}
 {C[T][B][U]}
 {H[Z][B]}
 {J[C][U]}
 {W[C][T][B][U]}
 {Z[C][T][B][U]}
 {Q[C][B][T|}
 {Z}}]
[,RECFM={{U [T][A|M]}
 {V[B][S][T][A|M]}
 {D[B][S][A]}
 {F[B|S|T|BS|BT][A|M]}}]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

 Chapter 7. Non-VSAM Macro Descriptions 213

 DCB (BSAM)

BSAM supports the following DCB parameters:

BFALN={F|D }
specifies the boundary alignment for each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro. If BFALN is
omitted, the system provides doubleword alignment for each buffer.

If the data set being allocated or processed contains ASCII tape records with a
block prefix, the block prefix is entered at the beginning of the buffer. Also, data
alignment depends on the length of the block prefix. For a description of how to
specify the block prefix length, see the description of the DCB BUFOFF
parameter.

You can specify:

F specifies each buffer is on a fullword boundary that is not also a
doubleword boundary.

D specifies each buffer is on a doubleword boundary.

If the BUILD macro is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for
the buffers and control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFALN and BFTEK are specified, they must
be supplied from the same source.

BFTEK=R
specifies BSAM is used to read unblocked variable-length spanned records with
keys from a direct data set. Each read operation reads one segment of the
record and places it in the area designated in the READ macro. The first
segment enters at the beginning of the area, but all subsequent segments are
offset by the length of the key (only the first segment has a key). The problem
program must provide an area in which it can assemble a record, identify each
segment, and assemble the segments into a complete record.

Source: BFTEK can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFTEK and BFALN are specified, they must
be supplied from the same source.

BLKSIZE= absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the maximum block length in bytes. For fixed-length, unblocked
records, this parameter specifies the record length. BLKSIZE includes only the
data block length. If keys are used, the length of the key is not included in the
value specified for BLKSIZE.

The actual value you can specify in BLKSIZE depends on the device type and
the record format being used. Device capacity for direct access storage devices
is described in Appendix E, “Selecting Logical Record Lengths and Block
Sizes” on page 413. For additional information about device capacity, see the
relevant device publication.

When PDSEs, compressed format data sets, or HFS files are being processed,
the value specified in BLKSIZE can be up to the maximum value. For other
data sets on direct access storage devices, the value specified for BLKSIZE
cannot exceed the capacity of a single track.

214 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

If fixed-length records are used, the value specified in BLKSIZE should be an
integral multiple of the value specified for the logical record length (LRECL).

For fixed-length unblocked records, LRECL must equal BLKSIZE (if LRECL is
specified).

If variable-length records are used, the value specified in BLKSIZE must
include the maximum logical record length (up to 32756 bytes) plus the 4 bytes
required for the block descriptor word (BDW). For format-D variable-length
records (ASCII data sets), the minimum BLKSIZE value is 18 bytes.

| The maximum value is 2048 bytes if the tape has ISO/ANSI Version 3 labels.
| This restriction does not apply to Version 4 labels. The maximum block size is
| 32,760 except for Version 3 ISO/ANSI tapes (ISO 1001-1979 and ANSI
| X3.27-1978), where the maximum block size is 2048. An attempt to exceed
| 2048 bytes for a Version 3 tape results in a label validation installation exit
| being called. The exit may allow violation of the standard by writing larger
| blocks. For more information about the BLKSIZE restrictions, see DFSMS/MVS
| Using Data Sets.

If ASCII tape records with a block prefix are processed, the value specified in
BLKSIZE must also include the length of the block prefix.

If BSAM is used to read variable-length spanned records the value specified for
BLKSIZE must be as large as the longest possible record segment in the data
set, including 4 bytes for the segment descriptor word (SDW) and 4 bytes for
the block descriptor word (BDW). The BLKSIZE must equal at least 8 bytes.

If undefined-length records are used, the value specified for BLKSIZE can be
altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted directly into the DCBBLKSI field of
the data control block or specified in the length parameter of a READ or
WRITE macro.

Processing PDSEs: The system reblocks PDSE records into its own internal
format when the data set is written, and reconstructs the blocks using the block
size from the DCB when the data set is read. For fixed-length blocked records,
the value specified in BLKSIZE must be a multiple of the value in LRECL (if
LRECL is specified). The LRECL value must be available to OPEN when the
PDSE is open for output.

When reading a PDSE directory using fixed-length blocked records, you can
specify a BLKSIZE of 256 or greater (the LRECL is ignored). specified in
BLKSIZE is the user-perceived block size of the data set. The actual physical
(or internal) block size of the data set is calculated by the system when the
data set is written. Note that this internal block size is transparent to the user.
The system, however, maintains the user's block boundaries when the data is
written. Therefore, it is able to reconstruct the exact user blocks when the data
set is read. When writing in a compressed format data set, the access method
generally compresses the data. This compression and decompression when
reading are transparent to the user.

Processing HFS files: Block boundaries are not maintained within an HFS file.
| This means that when you read, records may be distributed among blocks
| differently than they were written. When BLKSIZE is not specified (by any

source), it is defaulted to 80 on input.

System-Determined Block Size: IBM recommends that you not specify block
size except in these cases:

 Chapter 7. Non-VSAM Macro Descriptions 215

 DCB (BSAM)

� The record format is U
� The medium is tape without standard labels.
� Processing an HFS file.

This makes your program less dependent on the physical characteristics of the
device.

System-Determined Block Size for DASD Data Sets: For DASD data sets, if
the block size is not specified at the time that the data set is created, and
LRECL and RECFM are known, and the record format is not U, the system
derives an optimum block size for the data set. This system-determined block
size is retained in the data set label. When the data set is opened for output,
OPEN checks the block size in the data set label. If it is a system-determined
block size, and LRECL or RECFM have changed from those specified in the
data set label, OPEN will re-derive an optimum block size for the data set.

System-Determined Block Size for Tape Data Sets: If you do not specify a
block size for a tape data set, the system determines the optimum block size
when the data set is opened for OUTPUT or OUTIN. The system-determined
block size depends on the record format and type of the tape data set. See
DFSMS/MVS Using Data Sets for the table showing the block sizes that are set
for tape data sets.

Source: BLKSIZE can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, by the data set label of an existing data set,
or by the system determining a value for a new data set. The system does not
copy BLKSIZE when you code the JCL keyword LIKE. It derives the BLKSIZE
from RECFM and LRECL which can be copied. For more information on LIKE,
see OS/390 MVS JCL Reference and OS/390 MVS JCL User's Guide.

BUFCB= relexp
specifies the address of the buffer pool control block that you have constructed
by issuing a BUILD macro. The buffer pool must reside below the 16MB line.

If the buffer pool is to be constructed automatically or by a GETPOOL macro,
omit BUFCB. This is because the system places the address of the buffer pool
control block into the data control block. Also, if the problem program is to
control all buffering, omit BUFCB. A buffer pool control block resides below the
16MB line.

Source: BUFCB can be supplied in the DCB macro or by the problem program
before issuing a GETBUF macro.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, for each buffer in the buffer pool when the buffer
pool is acquired automatically. If BUFL parameter is omitted, the system builds
buffers with a length equal to the sum of the values specified in KEYLEN and
BLKSIZE. If the problem program requires larger buffers, BUFL is required. If
BUFL is specified, it must be at least as large as the value specified in
BLKSIZE. If the data set is for card image mode, BUFL should be specified as
160. The description of DEVD contains a description of card image mode.

If the data set contains ASCII tape records with a block prefix, the value
specified in BUFL must include the block length plus the length of the block
prefix.

If the problem program is to control all buffering or if the buffer pool is to be
constructed by a GETPOOL or BUILD macro, BUFL is not required.

216 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter
on a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers constructed by a BUILD macro or the number
of buffers acquired automatically by the system.

If the problem program controls all buffering or if the buffer pool is constructed
by a GETPOOL macro, omit BUFNO. The default is 0, meaning the system
does not acquire buffers automatically. If the system acquires buffers for
BSAM, they reside below the 16MB line. You may obtain each buffer by issuing
a GETBUF macro.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFOFF={absexp|L}
specifies the length, in bytes, of the block prefix used with an ASCII tape data
set. When BSAM is used to read an ASCII tape data set, the problem program
must use the block prefix length to determine the location of the data in the
buffer. When BSAM is used to write an output ASCII tape data set, the problem
program must insert the block prefix into the buffer, followed by the data
(BSAM considers the block prefix as data). The block prefix and data can
consist of any characters that can be converted into 7-bit ASCII code. Any
character that cannot be converted is replaced with a substitute character. (For
a more detailed description of ASCII conversion characteristics, see
DFSMS/MVS Using Magnetic Tapes.) For format-D records, the RDW must be
binary; if RECFM=D and BUFOFF=L, the RDW and BDW must both be binary.
On output, the control program converts the BDW and RDW to ASCII
characters and, on input, the control program converts ASCII data to BDW and
RDW. You can specify the following characters in BUFOFF:

absexp
specifies the length, in bytes, of the block prefix. This value can be from 0
to 99 for an input data set. The value must be 0 for writing an output data
set with fixed-length or undefined-length records (BSAM considers the
block prefix part of the data record).

L specifies the block prefix is 4 bytes long and contains the block length.
BUFOFF=L is used when format-D records (ASCII) are processed. When
BUFOFF=L is specified, the BSAM problem program can process the data
records (using READ and WRITE macros) in the same manner as if the
data were in format-V variable-length records. For further information on
format-D records, see DFSMS/MVS Using Data Sets.

If BUFOFF is omitted for an input data set with format-D records, the system
inserts the record length into the DCBLRECL field of the data control block.
The problem program must obtain the length from this field to process the
record.

If BUFOFF is omitted from an output data set with format-D records, the
problem program must insert the actual record length into the DCBBLKSI field
of the data control block or specify the record length in the length parameter of
a WRITE macro.

 Chapter 7. Non-VSAM Macro Descriptions 217

 DCB (BSAM)

Source: BUFOFF can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, or by the problem program before an OPEN
macro is issued to open the data set. BUFOFF=absexp can also be supplied by
the label of an existing data set. BUFOFF=L cannot be supplied by the label of
an existing data set.

DCBE=relexp
specifies the address of a DCB Extension (DCBE). The DCBE may reside
above the 16MB line. You may assemble a DCB and DCBE in a program that
resides above the line if the DCB is copied below the line before opening the
copy.

If the DCBE is specified, it must be specified before issuing the OPEN macro.
Like the DCB, the DCBE must exist until the data set is closed. Otherwise,
there may be unpredictable results.

Only one open DCB at a time can refer to a particular DCBE. After a DCB is
successfully closed, a different DCB referring to the DCBE may be opened.

The DCBE is not required for any data set.

If a DCBE exists, the flags DCBH0 and DCBH1 are both set on. The pointer to
the DCBE is stored at offset +0 in the DCB (and replaces the field
DCBRELAD). If a DCBE exists, data that would be stored at DCBRELAD is
stored in the DCBE (DCBERELA). If a DCBE does not exist, DCBRELAD
continues to be located at offset +0 in the DCB.

Source: The DCBE can be supplied in the DCB macro or before an OPEN
macro is issued to open the data set.

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the data set being allocated or processed.

Source: DDNAME can be supplied in the DCB macro or by the problem
program before an OPEN macro is issued to open the data set.

DEVD={DA|TA|PR|PC|RD}
specifies the device type where the data set can or does reside. The device
types above are shown with the optional parameters that can be coded when a
particular device is used. The devices are listed in order of device
independence. For example, if you code DEVD=DA in a DCB macro (or omit
DEVD parameter, which causes a default to DA), you can later use the data
control block constructed during assembly for any of the other devices, but, if
you code DEVD=RD, you can use the data control block only with a card
reader or card reader punch. Unless you are certain that device
interchangeability is not required, you should either code DEVD=DA or omit the
parameter and allow it to default to DA.

Note: If the data set can or does reside on DASD, do not code a value other
than DEVD=DA. For spooled data sets, the system ignores these
device-dependent parameters. If you code DEVD=PR, PC, or RD, do
not code the DCB macro in the first 16 bytes of addressability for the
control section.

DEVD is discussed below according to individual device type:

218 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

DEVD=DA
[,KEYLEN= absexp]

specifies the data control block can be used for a direct access storage
device (or any of the other device types described following DA).

KEYLEN=absexp
can be specified only for data sets that reside on direct access storage
devices. Because the KEYLEN is usually coded without the DEVD
parameter (default taken), the description of KEYLEN is in alphabetic
sequence with the other parameters.

DEVD=TA
 [,DEN={1|2|3|4}]
 [,TRTCH={C|E|ET|T}|{COMP|NOCOMP}]

specifies the data control block can be used for a magnetic tape data set
(or any of the other device types described following TA). If TA is coded,
you can code the following optional parameters:

DEN={1|2|3|4}
specifies the recording density in the number of bits-per-inch per track
as follows:

If DEN is not supplied by any source, the highest applicable density is
assumed.

Note: For magnetic tape drives that use cartridges, such as the 3480,
only a single density is available and is used by the system for
reading and writing; any density with the DEN parameter is
ignored.

TRTCH={C|E|ET|T}|{COMP|NOCOMP}
The TRTCH parameter has two different sets of values. One of the
sets, {C|E|ET|T}, is used to specify the recording technique for 7-track
tape. The other set, {COMP|NOCOMP}, is used to specify the recording
technique for magnetic tape drives with Improved Data Recording
Capability and override the system default.

{C|E|ET|T}
These values specify the recording technique for 7-track tape. One
of the above four values can be coded. If TRTCH is omitted, odd
parity with no translation or conversion is assumed. You can
specify:

DEN 7-Track 9-Track 18-Track 36-Track

1 556 N/A N/A N/A

2 800 800 (NRZI)1 N/A N/A

3 N/A 1600 (PE)2 N/A N/A

4 N/A 6250 (GCR)3 N/A N/A

Notes:

1. NRZI is for nonreturn-to-zero inverted mode.
2. PE is for phase encoded mode.
3. GCR is for group coded recording mode.

 Chapter 7. Non-VSAM Macro Descriptions 219

 DCB (BSAM)

C specifies the data-conversion feature is used with odd parity
and no translation.

E specifies even parity with no translation or conversion.

ET specifies even parity with BCDIC to EBCDIC translation
required and no data-conversion feature.

T specifies BCDIC to EBCDIC translation is required with odd
parity and no data-conversion feature.

{COMP|NOCOMP}
These values specify the recording technique for magnetic tape
drives with Improved Data Recording Capability. Either of the two
values can be coded. If TRTCH is omitted, the system default
specified in the active DEVSUPyy member of SYS1.PARMLIB
(initially set to NOCOMP) is assumed. You can specify:

COMP
record data in compacted format. COMP is not supported with
ISO/ANSI tape labels.

NOCOMP
record data in standard format.

Source: TRTCH can be supplied in the DCB macro, in the DCB
subparameter on a DD statement, in the IBM standard tape label or by
the problem program before completion of the data control block exit
routine.

DEVD=PR
 [,PRTSP={0|1 |2|3}]

specifies that the data control block is used for an online printer (or any of
the other device types following PR). If PR is coded, you can specify:

PRTSP={0|1|2|3}
specifies the line spacing on the printer. This parameter is not valid if
the RECFM parameter specifies either machine (RECFM=M) or
ISO/ANSI (RECFM=A) control characters. If PRTSP is not specified
from any source, 1 is assumed. You can specify:

0 specifies that spacing is suppressed (no space).
1 specifies single spacing.
2 specifies double spacing (one blank line between printed lines).
3 specifies triple spacing (two blank lines between printed lines).

DEVD=PC
 [,MODE=[C| E][R]]

 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|RW[T] |RWP[XT][D]|W[T]}]
specifies the data control block is used for a card punch (or any of the
other device types following PC). If PC is coded, you can specify the
following optional parameters:

MODE=[C|E][R]
specifies the mode of operation for the card punch. You can specify the
following characters (if MODE is omitted, E is assumed):

220 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

C specifies the cards are punched in card image mode. In card image
mode, the 12 rows in each card column are punched from 2
consecutive bytes in virtual storage. Rows 12 through 3 are
punched from the low-order 6 bits of one byte and rows 4 through
9 are punched from the low-order 6 bits of the following byte.

E specifies the cards are punched in EBCDIC code.

R specifies the program runs in read-column-eliminate mode (3525
card punch, read feature).

Note: If the MODE parameter for a 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be
specified if R is specified.

STACK={1 |2}
specifies the stacker bin where the card is placed after punching is
completed. If this parameter is omitted, stacker number 1 is used. You
can specify:

1 specifies stacker number 1.

2 specifies stacker number 2.

FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}
defines the type of 3525 card punch data sets used. If the FUNC
parameter is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to
punch only. You can specify:

D specifies the data protection option is used. The data protection
option prevents punching information into card columns that already
contain data. When the data protection option is used, an 80-byte
data protection image (DPI) must have been previously stored in
SYS1.IMAGELIB. Data protection applies only to the output/punch
portion of a read and punch or read, punch, and print operation.

I specifies the data in the data set is punched into and printed on the
cards. The first 64 characters are printed on line 1 of the card and
the remaining 16 characters are printed on line 3.

P specifies the data set is for punching cards. See the description of
the character X for associated punch and print data sets.

R specifies the data set is for reading cards.

T specifies that the two-line print option is used. The two-line print
option allows two lines of data to be printed on the card (lines 1
and 3). If T is not specified, the multiline print option is used; this
allows printing on all 25 possible print lines. In either case, the data
printed can be the same as the data punched in the card, or it can
be entirely different data.

W specifies the data set is for printing. See the description of the
character X for associated punch and print data sets.

 Chapter 7. Non-VSAM Macro Descriptions 221

 DCB (BSAM)

X specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to distinguish
the 3525 printer output data set from the 3525 punch output data
set.

Note: If data protection is specified, the data protection image (DPI)
must be specified in the FCB parameter of the DD statement for
the data set.

DEVD=RD
 [,MODE=[C|E][O|R]]
 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}]

specifies the data control block is used with a card reader or card read
punch. If RD is specified, the data control block cannot be used with any
other device type. When RD is coded, you can specify the following
optional parameters:

MODE=[C|E][O|R]
specifies the mode of operation for the card reader. You can specify:

C specifies the cards to read are in card image mode. In card image
mode, the 12 rows in each card column are read into 2 consecutive
bytes of virtual storage. Rows 12 through 3 are read into one byte
and rows 4 through 9 are read into the following byte.

E specifies the cards to read contain data in EBCDIC code.

O specifies the program runs in optical-mark-read mode (3505 card
reader).

R specifies the program runs in read-column-eliminate mode (3505
card reader or 3525 card punch, read feature).

Note: If MODE for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be
specified if R or O is specified.

STACK={1 |2}
specifies the stacker bin where the card is placed after reading is
completed. If this parameter is omitted, stacker number 1 is used. You
can specify:

1 specifies stacker number 1.

2 specifies stacker number 2.

FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}
defines the type of 3525 card punch data sets used. If the FUNC
parameter is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to
punch only. You can specify:

D specifies the data protection option is used. The data protection
option prevents punching information into card columns that already
contain data. When the data protection option is used, an 80-byte
data protection image (DPI) must have been previously stored in

222 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

SYS1.IMAGELIB. Data protection applies only to the output/punch
portion of a read and punch or read, punch, and print operation.

I specifies the data in the data set is punched into and printed on the
cards. The first 64 characters are printed on line 1 of the card and
the remaining 16 characters are printed on line 3.

P specifies the data set is for punching cards. See the description of
the character X for associated punch and print data sets.

R specifies the data set is for reading cards.

T specifies the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If
T is not specified, the multiline print option is used; this allows
printing on all 25 possible print lines. In either case, the data
printed can be the same as the data punched in the card, or it can
be entirely different data.

W specifies the data set is for printing. See the description of the
character X for associated punch and print data sets.

X specifies that an associated data set is opened for output for both
punching and printing. Coding the character X is used to distinguish
the 3525 printer output data set from the 3525 punch output data
set.

Note: If data protection is specified, the data protection image
(DPI) must be specified in the FCB subparameter of the DD
statement for the data set.

Source: DEVD can be supplied only in the DCB macro. However, the
optional parameters can be supplied in the DCB macro, the DCB
subparameter of a DD statement, or by the problem program before
completion of the data control block exit routine.

DSORG={PS|PSU}
specifies the data set organization and whether the data set contains any
location-dependent information that would make it unmovable. You can
specify:

PS
specifies a physical sequential data set, an extended format data set, a
member of a partitioned data set, PDSE, or an HFS file.

PSU
specifies a physical sequential data set containing location-dependent
information that makes it unmovable. See “NOTE—Provide Relative
Position (BPAM and BSAM—Tape and DASD Only)” on page 305 for
more information about unmovable data sets.

Note: Unmovable data sets cannot be system-managed. PDSEs and
extended format data sets must be system-managed, and, thus,
cannot be unmovable.

Source: You must code DSORG in the DCB macro.

 Chapter 7. Non-VSAM Macro Descriptions 223

 DCB (BSAM)

EODAD=relexp
specifies the address of the routine given control when the end of an input
data set is reached. If the record format is RECFM=FS or FBS, the
end-of-data condition is sensed when a file mark is read or when more data
is requested after reading a truncated block. The end-of-data routine is
entered when the CHECK macro determines that the READ macro reached
the end of the data. If the end of the data set is reached but no EODAD
address was supplied to the data control block (DCB) or DCBE, the task is
abnormally terminated. For additional information on the EODAD user exit
routine, see DFSMS/MVS Using Data Sets.

When the data set has been opened for other than UPDAT, the system
automatically switches volumes when the end of data on each volume is
reached.

When the data set has been opened for UPDAT and volumes are to be
switched, the problem program should issue a FEOV macro after the
EODAD routine has been entered.

This end-of-data routine entry point specified in the DCB must reside below
the line. If you wish the entry point to reside above the line, use the
EODAD parameter of the DCBE macro. See the EODAD parameter
description for the DCBE macro, “DCBE—(BSAM, QSAM, and BPAM)” on
page 261. The EODAD routine (whether it is specified in the DCBE or
DCB) receives control in the addressing mode in which the CHECK macro
was issued.

Source: EODAD can be supplied in the DCB macro or by the problem
program before the end of the data set is reached.

EXLST=relexp
specifies the address of the DCB exit list. EXLST is required if the problem
program requires additional processing for user labels, user totaling, data
control block exit routines, end-of-volume, block count exits, defining a
forms control buffer (FCB) image, using the JFCBE exit (for the IBM 3800
Printing Subsystem), or using the DCB ABEND exit for abend condition
analysis.

| The exit list must reside below the line. For the function, format, and
| requirements of exit list processing, see DFSMS/MVS Using Data Sets. Exit
| routines can reside above the 16 MB line if you use the technique
| described in Figure 30 on page 170.

Source: EXLST can be supplied in the DCB macro or by the problem
program any time before the relevant function is needed.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, for the key associated with each data block in
a direct access storage device data set. If the key length is not supplied
from any source before completion of the data control block exit routine, a
key length of zero (no keys) is assumed.

A nonzero key length is allowed for input from a PDSE, but is not allowed
for output to a PDSE. You can use keys for reading PDSE members, but
not for writing PDSE members.

You cannot specify a nonzero key length on output for an extended format
data set. KEYLEN is ignored for HFS files.

224 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

Source: KEYLEN can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by the data set label of
an existing data set. If KEYLEN=0 is specified in the DCB macro, a special
indicator is set in RECFM so that KEYLEN cannot be supplied from the
DCB subparameter of a DD statement or data set label of an existing data
set. KEYLEN=0 can be coded only in the DCB macro and is ignored if
specified in the DD statement.

Key length can be derived from the data class associated with the data set.
Key length can also be derived from the JCL keyword LIKE. However, if
KEYLEN is specified in the DCB macro, it overrides the value derived from
data class or LIKE. For more information, see OS/390 MVS JCL Reference.

LRECL={ absexp|X}
specifies the length, in bytes, for fixed-length records, or it specifies the
maximum length, in bytes, for variable-length records. LRECL=X is used for
variable-length spanned records that exceed 32756 bytes. Except when
variable-length spanned records are used, the value specified in LRECL
cannot exceed the value specified in BLKSIZE.

LRECL is required when using variable-length spanned records. LRECL is
also required for PDSEs and compressed format data sets containing
fixed-length block records when opened for output.

For other types of data sets. LRECL can be omitted for BSAM; the system
uses the value specified in BLKSIZE. If you want the system to determine
the optimum block size for the data set, you must code LRECL. If an
LRECL value is coded, it is coded as follows:

Unblocked fixed-length records: the value specified in LRECL must be
equal to the value specified in BLKSIZE.

Blocked fixed-length records: the value specified in the LRECL parameter
must be evenly divisible into the value specified in the BLKSIZE parameter.
However, except for PDSEs and compressed format data sets, LRECL is
not checked for validity.

Variable-length records: the value specified in LRECL must include the
maximum data length (up to 32752 bytes) plus 4 bytes for the
record-descriptor word (RDW).

Undefined-length records: omit LRECL; the actual length is supplied
dynamically in a READ/WRITE macro. When an undefined-length record is
read, the actual length of the record is returned by the system in the
DCBLRECL field of the data control block.

HFS files: record boundaries are not maintained within a binary HFS file.
When LRECL is not specified (by any source), it is defaulted to 80 on input.

X When using BSAM to create a direct data set with variable-length
spanned records, the LRECL value should be the maximum data length
(up to 32752) plus 4 bytes for the record descriptor word (RDW).
Specify LRECL=X if the logical record length is greater than 32756
bytes.

Source: LRECL can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before

 Chapter 7. Non-VSAM Macro Descriptions 225

 DCB (BSAM)

completion of the data control block exit routine, or by the data set label of
an existing data set.

Record length can be derived from the data class associated with the data
set. Record length can also be derived from the JCL keyword LIKE.
However, if LRECL is specified in the DCB macro, it overrides the value
derived from data class or LIKE. For more information, see OS/390 MVS
JCL Reference.

MACRF={{(R[C|P])}
 {(W[C|P|L])}
 {(R[C|P],W[C|P])}}

specifies the type of macros (READ, WRITE, CNTRL, and NOTE/POINT)
that are used with the data set being created or processed. The BSAM
MACRF parameter also provides the special form (MACRF=WL) for
creating a direct data set. MACRF can be coded in any of the combinations
shown above. The following characters can be coded for BSAM:

C specifies the CNTRL macro is used with the data set. If you specify C,
the device must be one of these described in “CNTRL—Control Directly
Allocated Input/Output Device (BSAM and QSAM)” on page 188. If C is
specified for use with a card reader, a CNTRL macro must follow each
input request.

L specifies BSAM is used to create a direct data set. This character can
be specified only in the combination MACRF=WL. This does not
support 31-bit addressing.

P specifies that POINT macros are used with the data set being created
or processed. Specifying P in MACRF also automatically allows you to
use NOTE macros with the data set.

Do not code P for FIFO or character special HFS files or when
PATHOPTS=OAPPEND (see NOTE and POINT macros for more
information).

The NOTE and POINT macros cannot be used with spooled data sets.
Some subsystems may support the NOTE and POINT macros with
TYPE=REL specified or defaulted. Assume it does not work unless the
subsystem documentation says it is supported.

R specifies that READ macros are used. R is required if the OPEN option
is INPUT, UPDAT, or RDBACK. It has no effect if the OPEN option is
OUTPUT or EXTEND. R may be specified if the OPEN option is INOUT
or OUTIN.

W specifies that WRITE macros are used. W is required if the OPEN
option is OUTPUT or EXTEND. It has no effect if the OPEN option is
INPUT or RDBACK. W may be specified if the OPEN option is UPDAT,
INOUT, or OUTIN.

Note: Each READ and WRITE macro issued in the problem program must
be checked for completion by a CHECK macro.

Source: MACRF must be specified in the DCB macro.

NCP=absexp (maximum value is 255)
specifies the maximum number of READ and WRITE macros issued before
the first CHECK macro is issued to test for completion of the I/O operation.

226 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

In an address space that is constrained for storage below the line,
requesting too large a number may result in abnormal termination of the
program. If NCP is omitted, 1 is assumed unless you coded the MULTSDN
parameter on the DCBE macro.

To request the system to default a value for NCP other than 1, you must
supply a DCBE and set MULTSDN to nonzero. The system will update
DCBNCP with the system-defaulted NCP (SDN) before the DCB OPEN exit
is given control. This allows you to give the system indicators without being
dependent on device information such as blocks per track or number of
stripes. If you change parameters in the OPEN exit which would cause
recalculation of system-determined block size, or you change block size,
the SDN will be re-derived after the OPEN exit and stored in the DCBNCP.

Extended format data sets: Some programs calculate NCP in the DCB
OPEN exit by using TRKCALC to get the number of blocks per track.
Since a suffix is included with each block on DASD for an extended format
data set, the number of blocks per track returned by TRKCALC might not
be accurate because it does not take into account the block suffix. This
may result in allocating more buffers than is necessary for an extended
format data set which consists of only one stripe. Also, for extended format
data sets which consist of more than one stripe, using an NCP of this
number of blocks per track will result in inadequate performance unless
NCP is made larger based on the number of stripes.

Note that for compressed format data sets, it is recommended that you not
specify NCP (thus, allowing the system to default it to 1) or specify NCP=1.
This is the optimal value for NCP for a compressed format data set since
the system handles all buffering internally for these data sets. Therefore,
the following technique for choosing a value for NCP does not pertain to
compressed format data sets. In fact, since the physical blocks have no
relationship to the user-specified block size, it is recommended that
TRKCALC not be used to return number of blocks per track of a
compressed format data set, since the value returned will not be accurate.

If you choose to calculate NCP in the DCB OPEN exit, then you may want
to choose to use the following technique to calculate a value for extended
format data sets. However, you can gain the same effect by coding the
MULTSDN parameter on the DCBE macro.

� Code a DCBE.

� In the OPEN exit, determine if the data set is extended format (the
value in DCBENSTR will be nonzero if the data set is extended format).
If the data set is not extended format, then OPEN will set DCBENSTR
to 0.

� Issue a DEVTYPE macro with the INFO=SUFFIX parameter to obtain
the length of the suffix.

� Add DCBBLKSI and the length of the suffix and pass this number in to
TRKCALC to get the correct number of blocks per track.

� Multiply the number of blocks per track from TRKCALC by the number
of stripes of an extended format data set (DCBENSTR). Assuming this
number of buffers is used, this would give one track's worth of buffers
per stripe.

 Chapter 7. Non-VSAM Macro Descriptions 227

 DCB (BSAM)

In addition, you may choose to multiply this value by n to get an NCP
value which is n tracks worth of buffers per stripe. A value of n greater
than 1 is likely to improve performance.

� If the calculated value exceeds 255, decrease it appropriately. Store the
calculated NCP value in DCBNCP.

Source: NCP can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the
data control block open exit routine.

OPTCD={{B}
 {T}
 {U[C]}
 {C[T][B][U]}
 {H[Z][B]}
 {J[C][U]}
 {W[C][T][B][U]}
 {Z[C][T][B][U]}
 {Q[C][B][T}
 {Z}}

specifies the optional services used with the sequential data set. Two of the
optional services, OPTCD=B and OPTCD=H, cannot be specified in the
DCB macro. They are requested in the DCB subparameter of a DD
statement. Because all optional services requests must be supplied by the
same source, you must omit OPTCD from the DCB macro if either of these
options is requested in a DD statement.

You can code the following characters in any order, in any combination,
and without commas between characters.

C specifies that chained scheduling is used. OPTCD=C cannot be
specified if BFTEK=R is specified for the same data control block. Also,
chained scheduling cannot be specified for associated data sets or
printing on a 3525 and is ignored for direct access storage devices.

Note: Except where it is not allowed, chained scheduling is used
whether requested or not. For conditions under which chained
scheduling is not allowed, see DFSMS/MVS Using Data Sets.

J specifies the first data byte in the output data line is a 3800 table
reference character. This table reference character selects a particular
character arrangement table for the printing of the data line and can be
used singly or with ISO/ANSI or machine control characters. This option
has effect for DASD data sets, SYSOUT data sets, and a directly
allocated IBM 3800 Printing Subsystem. On DASD, this indication is
saved in the data set label and can be available to programs that read
the data. Note that for a partitioned data set, the OPTCD value applies
to all members. If the SYSOUT data set is printed on a device that
does not support table reference character, the system discards that
byte. For information on the table reference character and character
arrangement table modules, see IBM 3800 Printing Subsystem
Programmer’s Guide

| Q requests conversion of the tape records between what is stored on tape
| and what is supplied from/to the problem program. For input requests,
| conversion is done at CHECK time. For output requests, conversion is

228 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

| done just before the record is written to tape. For further information on
| this conversion, see DFSMS/MVS Using Data Sets.

| The Q option implies that the character representation of the data on
| tape differs from that seen by the problem program. Data management
| converts records according to one of the following techniques:

| � CCSID Conversion

| If CCSIDs are supplied from any source for ISO/ANSI V4 tapes,
| records are converted between the CCSID which represents the
| data on tape and the CCSID as seen by the problem program. You
| can also prevent conversion by supplying a special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not
| supplied by any source, data management converts the records
| between ASCII code (which represents the data on tape) to
| EBCDIC code (which is seen by the problem program) using
| specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete
| description of CCSID conversion and Default Character conversion.

| See DFSMS/MVS Using Magnetic Tapes for more information about
| ISO/ANSI labels.

| Q is supported only for a magnetic tape that does not have IBM
| standard labels. If the tape has ISO/ANSI labels (LABEL=(,AL)), the
| system assumes OPTCD=Q.

T specifies the user totaling function. If this function is requested, EXLST
should specify the address of an exit list that includes a user totaling
entry. T cannot be specified for SYSIN and SYSOUT data sets.

Note: User totaling is supported only for sequential data sets that are
not extended format data sets. If user totaling is specified for a
partitioned data set, a PDSE, an extended format data set, or
an HFS file, it is ignored.

U specified only for a printer with the universal character set (UCS)
feature or the 3800 Printing Subsystem. This option unblocks data
checks (permits them to be recognized as errors) and allows analysis
by the appropriate error analysis routine (SYNAD exit routine). If the U
option is omitted, data checks are not recognized as errors.

W specifies, for DASD, that the system is to perform a validity check on
each block written on a direct access storage device.

OPTCD=W is ignored for PDSEs, extended format data sets, and HFS
files.

The system reads each block back. The intent is to ensure that the
data would survive a subsequent power failure. Because of the
performance degradation and the reliability of modern IBM devices and
recovery techniques, IBM recommends not coding OPTCD=W.

For buffered tape devices, specifies that device end interrupt is given
only when a block is physically on the device. By specifying OPTCD=W

 Chapter 7. Non-VSAM Macro Descriptions 229

 DCB (BSAM)

with buffered devices, you do not benefit from the performance
advantage of buffering.

Z for magnetic tape (input only). Requests the system to shorten its
normal error recovery procedure to consider a data check as a
permanent I/O error after five unsuccessful attempts to read a record.
OPTCD=Z is intended for use when a tape is known to contain errors
and there is no need to process every record. The error analysis
routine (SYNAD) should keep a count of permanent errors and
terminate processing if the number becomes excessive.

Note: The following optional services can be requested in the DCB
subparameter of a DD statement. If either of these options is
requested, the complete OPTCD parameter must be supplied in the
DD statement.

B forces the end-of-volume (EOV) routine to disregard the end-of-file
recognition for magnetic tape. When this occurs, the EOV routine uses
the number of volume serial numbers to determine end of file. For an
input data set on a standard labeled (SL or AL) tape, the EOV routine
treats EOF labels as EOV labels until the volume serial list is
exhausted. After all the volumes have been read, control is passed to
your end-of-data routine. This option allows SL or AL tapes to be read
out of volume sequence or to be concatenated to another tape using
one DD statement.

H specifies the VSE/MVS interchange feature is being used with the data
set. It is on magnetic tape and may contain VSE embedded checkpoint
records.

Source: OPTCD can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, in the data set label for direct access
storage devices, or by the problem program before completion of the DCB
open exit routine or JFCBE exit routine. However, all optional services must
be requested from the same source.

RECFM={{U[T][A|M]}
 {V[B][S][T][A|M]}
 {D[B][S][A]}
 {F[B|S|T|BS|BT][A|M]}}

specifies the record format and characteristics of the data set being
allocated or processed. All the record formats shown above can be
specified. BSAM recognizes only data blocks. Therefore, for record formats
that specify blocked records, the problem program must block and deblock
logical records. You can specify:

A specifies the records in the data set contain International Organization
for Standardization (ISO) or American National Standards Institute
(ANSI) control characters. For a description of control characters, see
Appendix C, “Control Characters” on page 407.

B specifies the data set contains blocked records.

D specifies the data set contains variable-length ASCII tape records.

F specifies the data set contains fixed-length records.

230 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (BSAM)

M specifies the records in the data set contain machine code control
characters. For a description of control characters, see Appendix C,
“Control Characters” on page 407. RECFM=M cannot be used with
ASCII data sets.

S specifies, for fixed-length records, that the records are written as
standard blocks. Except for the last block or track in the data set, the
data set contains no truncated blocks or unfilled tracks. Do not code S
to retrieve fixed-length records from a data set allocated using a
RECFM other than standard.

For variable-length records, including variable-length ASCII, S specifies
that a record can span more than one block.

T specifies that track overflow is used with the data set. Track overflow
allows a record to be written partially on one track of a direct access
storage device and the remainder of the record to be written on the
following tracks (if required).

Note: This is an obsolete option. The system ignores it.

U specifies that the data set contains undefined-length records.

| Note: Format-U records are not supported for Version 3 or Version 4
| ISO/ANSI tapes. An attempt to process a format-U record for a
| Version 3 or Version 4 tape results in a label validation
| installation exit being called.

Only ISO/ANSI Version 1 (ISO 1001-1969 or ANSI X3.27-1969)
format-U records can be used for input.

V specifies that the data set contains variable-length records.

Note:

� Do not specify RECFM=FS or RECFM-FBS for a partitioned
data set or PDSE because it will cause an abend.

� RECFM=V cannot be specified for a card reader data set or an
ISO/ANSI tape data set.

� RECFM=VS, VBS, DS, or DBS do not provide the spanned
record function. If this format is used, the problem program
must block and segment the records.

� RECFM=VS, VBS, DS, or DBS cannot be specified for a SYSIN
data set.

� RECFM=VS or VBS cannot be specified for an HFS file.

� RECFM=V cannot be used for a 7-track tape unless the data
conversion feature (TRTCH=C) is used.

Source: RECFM can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before
completion of the data control block exit routine, or by the data set label of
an existing data set.

Record format can be derived from the data class associated with the data
set. Record format can also be derived from the JCL keyword LIKE.
However, if RECFM is specified in the DCB macro, it overrides the value

 Chapter 7. Non-VSAM Macro Descriptions 231

 DCB (QISAM)

derived from data class or LIKE. For more information, see OS/390 MVS
JCL Reference.

SYNAD=relexp
| specifies the address of the error analysis (SYNAD) routine given control
| when an uncorrectable input/output error occurs. The entry point of this
| SYNAD routine must reside below the line. If you wish the entry point to
| reside above the line, use the SYNAD parameter of the DCBE macro. You
| can also use the technique shown in Figure 30 on page 170. The contents
| of the registers when the error analysis routine is given control are
| described in “Status Information Following an Input/Output Operation” on
| page 393.

| The error analysis routine must not use the save area pointed to by register
| 13. The system does not restore registers when it regains control from the
| error analysis routine. The error analysis routine can issue a RETURN
| macro that uses the address in register 14 to return control to the system. If
| control is returned in this manner, the system returns control to the problem
| program and proceeds as though no error had been found.

| When you have issue a CHECK macro, the SYNAD routine receives
| control after an I/O error occurs. If SYNAD is omitted, the task terminates
| abnormally when an uncorrectable input/output error occurs.

| The SYNAD routine (whether it is specified in the DCBE or DCB) receives
| control in the addressing mode in which the CHECK macro was issued. On
| return from a SYNADAF or SYNADRLS macro issued in the SYNAD
| routine, the high order byte of register 15 will be unpredictable. Therefore,
| callers of SYNADAF or SYNADRLS in 31-bit addressing mode must either
| not use register 15 as a base register or restore the high order bytes on
| return from SYNADAF or SYNADRLS.

| When operating a directly allocated IBM 3800 Model 3, 6, or 8 using
| all-points addressability, the SYNAD exit routine is entered if Print Services
| Facility (PSF) detects an unrecoverable error. However, no error
| information is available to the SYNAD routine. If you want to continue
| processing, you must close and reopen the data set to restart PSF. For
| more information on the 3800 Model 3 and 8, see IBM 3800 Printing
| Subsystem Programmer’s Guide for Models 3 and 8.

| Source: SYNAD can be supplied in the DCB macro or by the problem
| program. The problem program can also change the error routine address
| at any time.

DCB—Construct a Data Control Block (QISAM)
Use of the DCB (QISAM) macro is not recommended. We recommend you use
VSAM instead.

The data control block for a queued indexed sequential access method (QISAM)
data set is constructed during assembly of the problem program. You must code
DSORG and MACRF in the DCB macro, but the other DCB parameters can be
supplied to the data control block from other sources. Each QISAM DCB parameter
description contains a heading, “Source.” The information under this heading
describes the sources that can supply the parameter. Each reference to a DCB
OPEN exit routine applies also to a JFCBE exit routine.

232 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QISAM)

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it.

Note: You cannot use a QISAM DCB to open a data set allocated to an
SMS-managed volume.

The format of the DCB macro for QISAM is:

QISAM supports the following DCB parameters:

BFALN={F|D }
specifies the boundary alignment of each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro. If BFALN is
omitted, the system provides doubleword alignment for each buffer. You can
specify:

F specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D specifies that each buffer is on a doubleword boundary.

If the BUILD macro is used to construct the buffer pool, the problem program
must provide a storage area for the buffers and control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

BLKSIZE= absexp (maximum value KEYLEN + BLKSIZE is 32760)
specifies the length, in bytes, for each data block when fixed-length records are
used. Or, it specifies the maximum length in bytes, for each data block when
variable-length records are used. You must specify the BLKSIZE parameter
when creating an indexed sequential data set. When processing an existing

[label] DCB [BFALN={F|D }]
[,BLKSIZE= absexp]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,CYLOFL= absexp]
[,DDNAME=symbol] 1
,DSORG={IS|ISU}
[,EODAD= relexp]
[,EXLST= relexp]
[,KEYLEN= absexp]
[,LRECL= absexp]
,MACRF={{(PM)}
 {(PL)}
 {(GM[,S{K|I}])}
 {(GL[,S{K|I}][,PU])}}
[,NTM=absexp]
[,OPTCD={[I][L][M][R][U][W][Y]]}
[,RECFM={V[B]|F[B]}]
[,RKP=absexp]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this
DCB; it cannot be supplied in the open exit routine.

 Chapter 7. Non-VSAM Macro Descriptions 233

 DCB (QISAM)

indexed sequential data set, you must omit BLKSIZE (it is supplied by the data
set label).

You need to consider the track capacity of the direct access storage device
being used when specifying the block size for an indexed sequential data set.
For fixed-length records, the sum of the key length, data length, and device
overhead plus 10 bytes (for ISAM use) must not exceed the capacity of a
single track on the direct access storage device being used.

For variable-length records, the sum of the key length, block-descriptor word
length, record-descriptor word length, data length, and device overhead plus 10
bytes (for ISAM use) must not exceed the capacity of a single track on the
direct access storage device being used. For additional information about
space allocation, see DFSMS/MVS Using Data Sets.

If fixed-length records are used, the value specified in BLKSIZE must be a
whole number multiple of the value specified in LRECL.

Source: When an indexed sequential data set is allocated, the BLKSIZE can
be supplied in the DCB macro, in the DCB subparameter of a DD statement, or
by the problem program before completion of the data control block exit routine.
or by the system determining a value for a new data set. The system does not
copy BLKSIZE when you code the JCL keyword LIKE. It derives the BLKSIZE
from RECFM and LRECL which can be copied. When an existing indexed
sequential data set is processed, BLKSIZE must be omitted from the other
sources, allowing the data set label to supply the value.

BUFCB= relexp
specifies the address of the buffer pool control block constructed by a BUILD
macro.

If the system builds the buffer pool automatically or if the buffer pool is built by
a GETPOOL macro, omit BUFCB, because the system places the address of
the buffer pool control block into the data control block.

Source: BUFCB can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool to be constructed
by a BUILD or GETPOOL macro. When the data set is opened, the system
computes the minimum buffer length required and verifies that the length in the
buffer pool control block is equal to or greater than the minimum length
required. The system then inserts the computed length into the data control
block.

BUFL is not required for QISAM if the system acquires buffers automatically,
because the system computes the minimum buffer length required and inserts
the value into the data control block.

If the buffer pool is constructed with a BUILD or GETPOOL macro, additional
space is required in each buffer for system use. For a description of the buffer
length required for various ISAM operations, see DFSMS/MVS Using Data
Sets.

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block exit routine.

234 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QISAM)

BUFNO=absexp (maximum value is 255)
specifies the number of buffers to be constructed by a BUILD macro, or the
number of buffers to be acquired automatically by the system. If BUFNO is
omitted, the system automatically acquires two buffers.

If the GETPOOL macro is used to construct the buffer pool, BUFNO is not
required.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

CYLOFL=absexp (maximum value is number of tracks minus 1)
specifies the number of tracks on each cylinder reserved as an overflow area.
The overflow area contains records forced off prime area tracks when
additional records are added to the prime area track in ascending key
sequence. ISAM maintains pointers to records in the overflow area so that the
entire data set is logically in ascending key sequence. Tracks in the cylinder
overflow area are used by the system only if OPTCD=Y is specified. For a
more complete description of cylinder overflow area, refer to the space
allocation section of DFSMS/MVS Using Data Sets.

Source: When an indexed sequential data set is allocated, CYLOFL can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before completion of the data control block exit routine.
When an existing indexed sequential data set is processed, CYLOFL should be
omitted, allowing the data set label to supply the parameter.

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the indexed sequential data set being allocated or
processed.

Source: DDNAME can be supplied in the DCB macro or by the problem
program before an OPEN macro is issued to open the data set.

DSORG={IS|ISU}
specifies the data set organization, and whether the data set contains any
location-dependent information that would make it unmovable. You can specify:

IS specifies an indexed sequential data set organization.

ISU
specifies an indexed sequential data set that contains location-dependent
information. You can specify ISU only when creating an indexed sequential
data set.

Source: DSORG must be specified in the DCB macro. When an indexed
sequential data set is allocated, DSORG=IS or ISU must also be specified in
the DCB subparameter of the corresponding DD statement.

EODAD=relexp
specifies the address of the routine given control when the end of an input data
set is reached. For ISAM, this parameter applies only to scan mode when a
data set is open for an input operation. Control is given to this routine when a
GET macro is issued and there are no more input records to retrieve. EODAD
receives control in the addressing mode in which the GET or PUT macro was
issued. For additional information on the EODAD routine, see DFSMS/MVS
Using Data Sets.

 Chapter 7. Non-VSAM Macro Descriptions 235

 DCB (QISAM)

Source: EODAD can be supplied in the DCB macro or by the problem program
before the end of the data set is reached.

EXLST=relexp
specifies the address of the DCB exit list. EXLST is required only if the problem
program uses the data control block exit routine for additional processing.

For the functions, format, and requirements for exit list processing, see
DFSMS/MVS Using Data Sets. The exit list must reside below the line.

Source: EXLST can be supplied in the DCB macro or by the problem program
before the relevant function is needed.

KEYLEN=absexp (maximum value is 255)
specifies the length, in bytes, of the key associated with each record in an
indexed sequential data set. When blocked records are used, the key of the
last record in the block (highest key) is used to identify the block. However,
each logical record in the block has its own identifying key that ISAM uses to
access a given logical record.

Source: When an indexed sequential data set is allocated, KEYLEN can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before completion of the data control block exit routine.
When an existing indexed sequential data set is processed, KEYLEN must be
omitted, allowing the data set level to supply the key length value. KEYLEN=0
is not valid for an indexed sequential data set.

LRECL=absexp (maximum value is device-dependent)
specifies the length, in bytes, for fixed-length records, or it specifies the
maximum length, in bytes, for variable-length records. The value specified in
LRECL cannot exceed the value specified in BLKSIZE. When fixed, unblocked
records are used and the relative key position (as specified in the RKP
parameter) is zero, the value specified in LRECL should include only the data
length (the key is not written as part of the fixed, unblocked record when
RKP=0).

You need to consider the track capacity of the direct access storage device
being used when using maximum-length logical records. For fixed-length
records, the sum of the key length, data length, and device overhead plus 10
bytes (for ISAM use) must not exceed the capacity of a single track on the
direct access device being used. For variable-length records, the sum of the
key length, data length, device overhead, block-descriptor-word length, and
record-descriptor-word length plus 10 bytes (for ISAM use) must not exceed the
capacity of a single track on the direct access storage device being used. For
additional information about space allocation, see DFSMS/MVS Using Data
Sets.

Source: When an indexed sequential data set is allocated, LRECL can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before completion of the data control block exit routine.
When an existing indexed sequential data set is processed, LRECL must be
omitted, allowing the data set label to supply the value.

236 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QISAM)

MACRF={{(PM)}
 {(PL)}
 {(GM[,S{K|I}])}
 {(GL[,S{K|I}][,PU])}}

specifies the type of macros, the transmittal mode, and type of search used
with the data set being processed. The parameter can be coded in any of the
combinations shown above. You can specify the following characters for
QISAM:

The following characters can be specified only when the data set is being
created (load mode) or additional records are being added to the end of the
data set (resume load):

PL specifies that PUT macros are used in the locate transmittal mode. The
system provides the problem program with the address of a buffer
containing the data to be written into the data set.

PM
specifies that PUT macros are used in the move transmittal mode. The
system moves the data to be written from the problem program work area
to the buffer being used.

The following characters can be specified only when the data set is being
processed (scan mode) or when records in an indexed sequential data set are
being updated in place:

GL
specifies that GET macros are used in the locate transmittal mode. The
system provides the problem program with the address of a buffer
containing the logical record read.

GM
specifies that GET macros are used in the move mode. The system moves
the logical record from the buffer to the problem program work area.

I specifies that actual device addresses (MBBCCHHR) are used to search
for a record (or the first record) to be read.

K specifies that a key or key class is used to search for a record (or the first
record) to be read.

PU
specifies that PUTX macros are used to return updated records to the data
set.

S specifies that SETL macros are used to set the beginning location for
processing the data set.

Source: MACRF must be coded in the DCB macro.

NTM=absexp (maximum value is 99)
specifies the number of tracks created in a cylinder index before a higher-level
index is created. If the cylinder index exceeds this number, a master index is
created by the system. If a master index exceeds this number, the next level of
master index is created. The system creates as many as three levels of master
indexes. NTM is ignored unless the master index option (OPTCD=M) is
selected.

 Chapter 7. Non-VSAM Macro Descriptions 237

 DCB (QISAM)

Source: When an indexed sequential data set is being allocated, NTM can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before completion of the data control block exit routine.
When an indexed sequential data set is being processed, master index
information is supplied to the data control block from the data set label, and
NTM must be omitted.

OPTCD={[I][L][M][R][U][W][Y]}
specifies the optional services performed by the system when an indexed
sequential data set is being allocated or updated. You can code the following
characters in any order, in any combination, and without commas between
characters:

I specifies that the system uses the independent overflow areas to contain
overflow records. Note that it is only the use of the allocated independent
overflow area that is optional. Under certain conditions, the system
designates an overflow area that was not allocated for independent
overflow by the problem program. DFSMS/MVS Using Data Sets explains
how to allocate space for an indexed sequential data set.

L specifies that the data set is to contain records flagged for deletion. A
record is flagged for deletion by placing a hexadecimal value of 'FF' in the
first data byte. Records flagged for deletion remain in the data set until the
space is required for another record to be added to the track and are
ignored during sequential retrieval of the indexed sequential data set
(QISAM, scan mode). This option cannot be specified for blocked
fixed-length records if the relative key position is 0 (RKP=0), or it cannot be
specified for variable-length records if the relative key position is 4
(RKP=4).

When an indexed sequential data set is being processed with BISAM, a
record with a duplicate key can be added to the data set (WRITE KN
macro), only when OPTCD=L is specified and the original record (the one
whose key is being duplicated) is flagged for deletion.

M specifies that the system create and maintain a master index or indexes
according to the number of tracks specified in NTM.

R specifies that the system place reorganization statistics in the data control
block. The problem program can analyze these statistics to determine when
to reorganize the data set. If OPTCD is omitted, the reorganization statistics
are automatically provided. However, if you use OPTCD, you must specify
OPTCD=R to obtain the reorganization statistics.

U specifies that the system is to accumulate track index entries in storage
and write them as a group for each track of the track index. OPTCD=U can
be specified only for fixed-length records. The entries are written in
fixed-length unblocked format.

W specifies a validity check on each record written.

Y specifies that the system is to use the cylinder overflow areas to contain
overflow records. If OPTCD=Y is specified, CYLOFL specifies the number
of tracks used for the cylinder overflow area. The reserved cylinder
overflow area is not used unless OPTCD=Y is specified.

Source: When an indexed sequential data set is allocated, OPTCD can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by

238 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QISAM)

the problem program before an OPEN macro is issued to open the data set.
However, all optional services must be requested from the same source. When
an existing indexed sequential data set is processed, the optional service
information is supplied to the data control block from the data set label, and
OPTCD should be omitted.

RECFM={V[B]|F[B]}
specifies the format and characteristics of the records in the data set. If the
RECFM parameter is omitted, variable-length records (unblocked) are
assumed. You can specify:

B specifies that the data set contains blocked records.
F specifies that the data set contains fixed-length records.
V specifies that the data set contains variable-length records.

Source: When an indexed sequential data set is allocated, RECFM can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before an OPEN macro is issued to open the data set.
When an existing indexed sequential data set is processed, the record format
information is supplied by the data set label, and RECFM should be omitted.

If the record format information is supplied in the DD statement or the DCB, it
must agree with the information in the data set label.

RKP=absexp
specifies the relative position of the first byte of the key within each logical
record. For example, if RKP=9 is specified, the key starts in the 10th byte of
the record. Do not specify the delete option (OPTCD=L) if the relative key
position is the first byte of a blocked fixed-length record or the fifth byte of a
variable-length record. If the RKP parameter is omitted, RKP=0 is assumed.

If unblocked fixed-length records with RKP=0 are used, the key is not written as
a part of the data record, and the delete option can be specified. If blocked
fixed-length records are used, the key is written as part of each data record;
either RKP must be greater than zero or the delete option must not be used.

If variable-length records (blocked or unblocked) are used, and if the delete
option is not specified, RKP must be 4 or greater. If the delete option is
specified, RKP must be specified as 5 or greater. The 4 additional bytes allow
for the block descriptor word in variable-length records.

Source: When an indexed sequential data set is allocated, RKP can be
supplied in the DCB macro, in the DCB subparameter of a DD statement, or by
the problem program before completion of the data control block exit routine.
When an existing indexed sequential data set is processed, the RKP
information is supplied by the data set label and the RKP parameter should be
omitted.

SYNAD=relexp
specifies the address of the error analysis routine given control when an
uncorrectable input/output error occurs. The entry point of this SYNAD routine
must reside below the line. The contents of the registers when the error
analysis routine is given control are described in “Status Information Following
an Input/Output Operation” on page 393.

The error analysis routine must not use the save area pointed to by register 13.
The system does not restore registers when it regains control from the error
analysis routine. The error analysis routine can issue a RETURN macro that

 Chapter 7. Non-VSAM Macro Descriptions 239

 DCB (QISAM)

uses the address in register 14 to return control to the system. When control is
returned in this manner, the system returns control to the problem program and
proceeds as though no error had been found; if the error analysis routine
continues processing, the results might be unpredictable.

For additional information on error analysis routine processing for indexed
sequential data sets, see DFSMS/MVS Using Data Sets .

Source: SYNAD can be supplied in the DCB macro or by the problem
program. The problem program can also change the error analysis routine
address at any time.

240 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

DCB—Construct a Data Control Block (QSAM)
The data control block for a queued sequential access method (QSAM) data set is
constructed during assembly of the problem program. You must code DSORG and
MACRF in the DCB macro, but the other DCB parameters can be supplied to the
data control block from other sources. Each DCB parameter description contains a
heading, “Source.” The information under this heading describes the sources that
can supply the parameter. Each reference to a DCB OPEN exit routine applies also
to a JFCBE exit routine.

You can assemble the DCB macro into a program that resides above the 16MB
line, but the program must move it below the line before using it. Except for the
DCBE, all areas that the DCB refers to, such as EXLST and EODAD, must be
below the 16MB line.

The format of the DCB macro for QSAM is:

 Chapter 7. Non-VSAM Macro Descriptions 241

 DCB (QSAM)

Notes:

1. When creating a DCB to open a data set allocated to an SMS-managed
volume, do not specify values that would change the data set to a type which
cannot be SMS-managed, such as DSORG=PSU.

2. See IBM 3890 Document Processor Machine and Programming Description for
information on additional parameters for the DCB macro for the IBM 3890
Document Processor.

QSAM supports the following DCB parameters:

[label] DCB [BFALN={F|D }]
[,BFTEK={S |A}]
[,BLKSIZE= absexp]
[,BUFCB= relexp]
[,BUFL= absexp]
[,BUFNO=absexp]
[,BUFOFF={ absexp|L}]
[,DCBE= relexp] 1
[,DDNAME=symbol] 1
[,DEVD={{DA }
 {TA
 [,DEN={1|2|3|4}]
 [,TRTCH={C|E|ET|T}|{COMP|NOCOMP}]}
 {PR
 [,PRTSP={0|1 |2|3}]}
 {PC
 [,MODE=[C|E][R]]
 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|
 RW[T]|RWP[XT][D]|W[T]}]}
 {RD
 [,MODE=[C|E][O|R]]
 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|
 RW[T]|RWP[XT][D]|W[T]}]}}]
,DSORG={PS|PSU}
[,EODAD= relexp]
[,EROPT={ACC|SKP|ABE }]
[,EXLST= relexp]
[,LRECL={ absexp|X|0K|nnnnnK}]
,MACRF={{(G{M|L|D}[C])}
 {(P{M|L|D}[C])}
 {(G{M|L|D}[C],P{M|L|D}[C])}}
[,OPTCD={{B}
 {T}
 {U[C]}
 {C[T][B][U]}
 {H[Z][B]}
 {J[C][U]}
 {W[C][T][B][U]}
 {Z[C][T][B][U]}
 {Q[C][B][T]}]
 {Z}}]
[,RECFM={{U [T][A|M]}
 {V[B][S][T][A|M]}
 {D[B][S][A]}
 {F[B|S|T|BS|BT][A|M]}}]
[,SYNAD= relexp]

Note:

1. This parameter must be supplied before an OPEN macro is issued for this DCB; it
cannot be supplied in the open exit routine.

242 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

BFALN={F|D }
specifies the boundary alignment of each buffer in the buffer pool when the
buffer pool is constructed automatically or by a GETPOOL macro. If BFALN is
omitted, the system provides doubleword alignment for each buffer.

If the data set being allocated or processed contains ASCII tape records with a
block prefix, the block prefix is entered at the beginning of the buffer. Also, data
alignment depends on the length of the block prefix. For a description of how
to specify the block prefix length, see the description of BUFOFF.

You can specify:

F specifies that each buffer is on a fullword boundary that is not also a
doubleword boundary.

D specifies that each buffer is on a doubleword boundary.

If the BUILD macro is used to construct the buffer pool, the problem program
must control buffer alignment.

Source: BFALN can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFALN and BFTEK are specified, they must
be supplied from the same source.

BFTEK={S |A}
specifies the buffering technique. If BFTEK is omitted, simple buffering is
assumed. You can specify:

S specifies that simple buffering is used.

A specifies that a logical record interface is used for variable-length spanned
records. When BFTEK=A is specified, the open routine acquires a record
area equal to the length specified in the LRECL field plus 32 additional
bytes for control information. LRECL=0 is invalid. The LRECL provided at
open should be the maximum length in bytes. When a logical record
interface is requested, the system uses the simple buffering technique.

BFTEK=A is invalid with move transmittal mode.

BFTEK=A is invalid with HFS files.

To use the simple buffering technique efficiently, you should be familiar with the
three transmittal modes for QSAM and the buffering techniques described in
DFSMS/MVS Using Data Sets.

Source: BFTEK can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine. If both BFTEK and BFALN are specified, they must
be supplied from the same source.

BLKSIZE= absexp (maximum value is 32760 bytes)
specifies the length, in bytes, of each data block for fixed-length records. Or, it
specifies the maximum length, in bytes, of each data block for variable-length
or undefined-length records.

The actual value you can specify in BLKSIZE depends on the device type and
record format being used. (For additional information about device capacity,
refer to the relevant device publication.)

 Chapter 7. Non-VSAM Macro Descriptions 243

 DCB (QSAM)

When PDSEs, compressed format data sets, and HFS files are being
processed, the value specified in BLKSIZE can be up to the maximum value.
For other data sets on direct access storage devices, the value specified in
BLKSIZE cannot exceed the capacity of a single track. One exception to the
device capacity for a logical record is the size of variable-length spanned
records. Their length can exceed the value specified in the BLKSIZE parameter
(see the description of LRECL).

If fixed-length records are used, the value specified in BLKSIZE must be a
whole number multiple of the value specified in LRECL. If the records are
unblocked fixed-length records, the value specified in BLKSIZE must equal the
value specified in LRECL.

| If variable-length records are used, the value specified in BLKSIZE must
| include the data length (up to 32756 bytes) plus 4 bytes required for the block
| descriptor word (BDW). For format-D variable-length records, the minimum
| BLKSIZE value is 18 bytes. The maximum is 2048 bytes if the tape has
| ISO/ANSI Version 3 labels. This restriction does not apply to Version 4 labels.
| The maximum block size is 32,760 except for ISO/ANSI Version 3 records,
| where the maximum block size is 2048. An attempt to exceed 2048 bytes for a
| Version 3 tape results in a label validation installation exit being taken. The exit
| may allow violation of the standard by writing larger blocks. For more
| information about BLKSIZE restrictions, see DFSMS/MVS Using Data Sets.

If ASCII tape records with a block prefix are processed, the value specified in
BLKSIZE must also include the length of the block prefix. If an ASCII format DB
or DBS tape data set is opened for output using QSAM with the system
acquiring the buffers and BUFOFF=0 specified, the value specified in BLKSIZE
must be increased by 4 to allow for a 4 byte QSAM internal processing area. If
BUFL is specified, the BUFL value must be increased by 4, instead of the
BLKSIZE value.

If variable-length spanned records are used, the value specified in BLKSIZE
can be the best one for the device being used or the processing being done.
When unit record devices (card or printer) are used, the system assumes
records are unblocked. The value specified for BLKSIZE is equivalent to one
print line or one card. A logical record that spans several blocks is written one
segment at a time.

If undefined-length records are used, the problem program can insert the actual
record length into the DCBLRECL field. See the description of LRECL.

Processing PDSEs: The system reblocks PDSE records into its own internal
format when the data set is written, and reconstructs the blocks using the block
size from the DCB when the data set is read. For fixed-length blocked records,
the value specified in BLKSIZE must be a multiple of the value in LRECL. The
LRECL value must be available to OPEN when the data set is open for output.

For fixed-length unblocked records, LRECL (if specified) must equal BLKSIZE.

When reading a PDSE directory using fixed-length blocked records, you can
specify a BLKSIZE of 256 or greater (the LRECL is ignored).

Processing HFS files: Block boundaries are not maintained within an HFS file.
| This means that when you read, records may be distributed among blocks
| differently than they were written.When BLKSIZE is not specified (by any

source), it is defaulted to 80 on input.

244 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

System-Determined Block Size for DASD Data Sets: For blocked DASD data
sets, if the block size is not specified at the time that the data set is created,
and the LRECL and RECFM are known, the system derives an optimum block
size for the data set. This system-determined block size is retained in the data
set label. When the data set is opened for output, OPEN checks the block size
in the data set label. If it is a system-determined block size, and the LRECL or
RECFM have changed from those specified in the data set label, OPEN
redetermines an optimum block size for the data set.

System-Determined Block Size: IBM recommends that you not specify block
size except in these cases:

� The record format is U.
� The medium is tape without standard labels.
� HFS file processing.

This makes your program less dependent on the physical characteristics of the
device.

System-Determined Block Size for Tape Data Sets: If you do not specify a
block size for a tape data set, the system determines the optimum block size
when the data set is opened for OUTPUT or OUTIN. The system-determined
block size depends on the record format and type of the tape data set. See
DFSMS/MVS Using Data Sets for the table showing the block sizes set for tape
data sets.

Source: BLKSIZE can be supplied in the DCB macro, in the DCB
subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, by the data set label of an existing data set,
or by the system determining a value for a new data set. The system does not
copy BLKSIZE when you code the JCL keyword LIKE. It derives the BLKSIZE
from RECFM and LRECL which can be copied. For more information on LIKE,
see OS/390 MVS JCL Reference and OS/390 MVS JCL User's Guide.

BUFCB= relexp
specifies the address of the buffer pool control block that you have constructed
by issuing a BUILD or BUILDRCD macro. The buffer pool control block resides
below the 16MB line. If the buffer pool is constructed automatically above the
line because RMODE31=BUFF is coded on the DCBE macro, omit the BUFCB
parameter because the system places the address of the buffer pool control
block into the data control block.

If you want the system to acquire buffers automatically above the 16MB line,
omit the BUFCB parameter and code RMODE31=BUFF on the DCBE macro.
In this case, the buffer pool control block will continue to reside below the
16MB line although the buffers are above the 16MB line.

Source: BUFCB can be supplied in the DCB macro or by the problem program
before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32760)
specifies the length, in bytes, of each buffer in the buffer pool when the buffer
pool is acquired automatically. If BUFL is omitted or if RMODE31=BUFF is
coded on the DCBE macro, the system acquires buffers with a length equal to
the value specified in BLKSIZE. If the problem program requires larger buffers,
BUFL is required. If the data set is for card image mode, BUFL is specified as
160 bytes. The description of DEVD contains a description of card image
mode.

 Chapter 7. Non-VSAM Macro Descriptions 245

 DCB (QSAM)

If the data set contains ASCII tape records with a block prefix, the value
specified in BUFL must also include the length of the block prefix. If an ASCII
format DB or DBS tape data set is opened for output using QSAM and
BUFOFF=0 is specified, then the BUFL value, if specified, must be increased
by 4 to allow for a 4-byte QSAM internal processing area.

If the buffer pool is constructed by a BUILD, BUILDRCD, or GETPOOL macro,
BUFL is not required.

Source: BUFL can be supplied in the DCB macro, in the DCB subparameter of
a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFNO=absexp (maximum value is 255)
specifies the number of buffers in the buffer pool constructed by a BUILD or
BUILDRCD macro or the number of buffers acquired automatically. If chained
scheduling is specified, the value of BUFNO also determines the maximum
number of channel program segments that can be chained and must be
specified as more than one. If BUFNO is omitted and the buffers are acquired
automatically, the system acquires:

� 1 for a PDSE member.

� 1 for an extended format data set in compressed format.

� 1 for an HFS file.

� (2 * number of stripes * number of blocks per track) for an extended format
data set if it is not in the compressed format.

� 3 for an IBM 2540 card reader or card punch.

� 5 for other types of devices or data sets.

It is not useful to specify more than one buffer for a data set in compressed
format unless you expect to reuse the buffer pool for a data set that is not
compressed.

If the buffer pool is constructed by a GETPOOL macro, BUFNO is not required.

Source: BUFNO can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program before completion of the data
control block exit routine.

BUFOFF={absexp|L}
| specifies the length, in bytes, of the block prefix used with an ASCII or
| ISO/ANSI tape data set. When QSAM is used to read an ASCII or ISO/ANSI
| tape data set, only the data portion (or its address) is passed to the problem
| program; the block prefix is not available to the problem program. Block
| prefixes (except BUFOFF=L) cannot be included in QSAM output records. You
| can specify:

| absexp
| specifies the length, in bytes, of the block prefix. This value can be from 0
| to 99 for an input data set. The value must be 0 for writing an output data
| set with fixed-length or undefined-length records.

| L specifies that the block prefix is 4 bytes long and contains the block length.
| BUFOFF=L is used when format-D records are processed. QSAM uses the
| 4 bytes as a block-descriptor word (BDW). See DFSMS/MVS Using Data
| Sets for further information on format-D records.

246 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

| Source: BUFOFF can be supplied in the DCB macro, in the DCB
| subparameter of a DD statement, or by the problem program before an OPEN
| macro is issued to open the data set. BUFOFF=absexp can also be supplied by
| the second system label of an existing data set; BUFOFF=L cannot be supplied
| by the label of an existing data set.

DCBE=relexp
specifies the address of a DCB Extension (DCBE). The DCBE may reside
above the 16MB line. You may assemble a DCB and DCBE in a program that
resides above the line if the DCB is copied below the line before opening the
copy.

If the DCBE is specified, it must be specified before issuing the OPEN macro.
Like the DCB, the DCBE must exist until the data set is closed. Otherwise,
there may be unpredictable results.

Only one open DCB at a time can refer to a particular DCBE. After a DCB is
successfully closed, a different DCB referring to the DCBE may be opened.

The DCBE is not required for any data set.

If a DCBE exists, the flags DCBH0 and DCBH1 are both set on. The pointer to
the DCBE is stored at offset +0 in the DCB (and replaces the field
DCBRELAD). If a DCBE exists, data that would be stored at DCBRELAD is
stored in the DCBE (DCBERELA). If a DCBE does not exist, DCBRELAD
continues to be located at offset +0 in the DCB.

Source: The DCBE can be supplied in the DCB macro before an OPEN macro
is issued to open the data set.

DDNAME=symbol
specifies the name used to identify the job control language data definition (DD)
statement that defines the data set being allocated or processed.

Source: DDNAME can be supplied in the DCB macro or by the problem
program before an OPEN macro is issued to open the data set.

DEVD={DA|TA|PR|PC|RD}[, options]
specifies the device type where the data set can or does reside. The device
types above are shown with the optional parameters that can be coded when a
particular device is used. The devices are listed in order of device
independence. For example, if you code DEVD=DA in a DCB macro (or omit
DEVD, which causes a default to DA), you can use later the data control block
constructed during assembly for any of the other devices. But, if you code
DEVD=RD, you can use the data control block only with a card reader or card
reader punch. Unless you are certain that device interchangeability is not
required, you should either code DEVD=DA or omit the parameter and allow it
to default to DA.

Note: If the data set can or does reside on DASD, do not code a value other
than DEVD=DA.

For spooled data sets, the system ignores these device-dependent parameters.
If you code DEVD=PR, PC, or RD, do not code the DCB macro in the first 16
bytes of addressability for the control section.

DEVD is discussed below according to individual device type:

 Chapter 7. Non-VSAM Macro Descriptions 247

 DCB (QSAM)

DEVD=DA
specifies that the data control block can be used for a direct access storage
device (or any of the other device types described following DA).

DEVD=TA
 [,DEN={1|2|3|4}]
 [,TRTCH={C|E|ET|T}|{COMP|NOCOMP}]

specifies that the data control block can be used for a magnetic tape data
set (or any of the other device types described following TA). If TA is
coded, you can specify the following optional parameters:

DEN={1|2|3|4}
specifies the recording density in the number of bits-per-inch per track
as follows:

Note: For magnetic tape drives that use cartridges, such as the 3480,
only a single density is available and is used by the system for
reading and writing; any density with the DEN parameter is
ignored.

TRTCH={C|E|ET|T}|{COMP|NOCOMP}
The TRTCH parameter has two different sets of values. One of the
sets, {C|E|ET|T}, is used to specify the recording technique for 7-track
tape. The other set, {COMP|NOCOMP}, is used to specify the recording
technique for magnetic tape drives with Improved Data Recording
Capability and override the system default.

{C|E|ET|T}
These values specify the recording technique for 7-track tape. One
of the above four values can be coded. If TRTCH is omitted, odd
parity with no translation or conversion is assumed. You can
specify:

C specifies that the data-conversion feature is used with odd
parity and no translation.

E specifies even parity with no translation or conversion.

ET specifies even parity with BCDIC to EBCDIC translation
required, but no data-conversion feature.

T specifies BCDIC to EBCDIC translation is required with odd
parity and no data-conversion feature.

DEN 7-Track 9-Track 18-Track 36-Track

1 556 N/A N/A N/A

2 800 800 (NRZI)1 N/A N/A

3 N/A 1600 (PE)2 N/A N/A

4 N/A 6250 (GCR)3 N/A N/A

Notes:

1. NRZI is for nonreturn-to-zero inverted mode.

2. PE is for phase encoded mode.

3. GCR is for group coded recording mode.

248 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

{COMP|NOCOMP}
These values specify the recording technique for magnetic tape
drives with Improved Data Recording Capability. Either of the two
values can be coded. If TRTCH is omitted, the default specified in
the active DEVSUPyy member of SYS1.PARMLIB (initially set to
NOCOMP) is assumed. You can specify:

COMP
specifies record data in compacted format. COMP is not
supported with ISO/ANSI tape labels.

NOCOMP
specifies record data in standard format.

Source: TRTCH can be supplied in the DCB macro, in the DCB subparameter
on a DD statement, in the IBM standard tape label or by the problem program
before completion of the data control block exit routine.

DEVD=PR
 [,PRTSP={0|1 |2|3}]

specifies that the data control block is used for an online printer (or any of the
other device types following PR). If PR is coded, you can specify the following
optional parameter:

PRTSP={0|1|2|3}
specifies the line spacing on the printer. This parameter is not valid if
RECFM specifies either machine (RECFM=M), or ANSI or ISO control
characters (RECFM=A). If PRTSP is not specified from any source, 1 is
assumed. You can specify:

0 specifies that spacing is suppressed (no space).
1 specifies single spacing.
2 specifies double spacing (one blank line between printed lines).
3 specifies triple spacing (two blank lines between printed lines).

Note: You cannot use MODE and FUNC subparameters with this
specification.

DEVD=PC
 [,MODE=[C| E][O|R]]

 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}]

specifies that the data control block is used for a card punch (or any of the
other device types following PC). If PC is coded, you can specify the following
optional parameters:

MODE=[C|E][R]]
specifies the mode of operation for the card punch. If MODE is omitted, E
is assumed. You can specify:

C specifies that the cards are punched in card image mode. In card
image mode, the 12 rows in each card column are punched from 2
consecutive bytes of virtual storage. Rows 12 through 3 are punched
from the 6 low-order bits of one byte, and rows 4 through 9 are
punched from the 6 low-order bits of the following byte.

E specifies that cards are punched in EBCDIC code.

 Chapter 7. Non-VSAM Macro Descriptions 249

 DCB (QSAM)

R specifies that the program runs in read-column-eliminate mode (3505
card reader or 3525 card punch, read feature).

STACK={1 |2}
specifies the stacker bin where the card is placed after punching
completes. If this parameter is omitted, stacker number 1 is used. You can
specify:

1 specifies stacker number 1.
2 specifies stacker number 2.

FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}
specifies the type of 3525 card punch data sets to be used. If FUNC is
omitted from all sources, a data set opened for input defaults to read only,
and a data set opened for output defaults to punch only. You can specify:

D specifies that the data protection option is used. The data protection
option prevents punching information into card columns that already
contain data. When the data protection option is used, an 80-byte data
protection image (DPI) must be previously stored in SYS1.IMAGELIB.
Data protection applies only to the output punch portion of a read and
punch or read, punch, and print operation.

I specifies that the data in the data set is punched into cards and printed
on the cards. The first 64 characters are printed on line 1 of the card
and the remaining 16 characters are printed on line 3.

P specifies that the data set is for punching cards. See the description of
the character X for associated punch and print data sets.

R specifies that the data set is for reading cards.

T specifies that the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is
not specified, the multiline print option is used; this allows printing on all
25 possible print lines. In either case, the data printed can be the same
as the data punched in the card, or it can be entirely different data.

W specifies that the data set is for printing. See the description of the
character X for associated punch and print data sets.

X specifies that an associated data set is opened for output for both
punching and printing. Coding the character X distinguishes the 3525
printer output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB subparameter of the DD statement for the data set.

DEVD=RD
 [,MODE=[C| E][O|R]]

 [,STACK={1 |2}]
 [,FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}]

RD
specifies that the data control block is used with a card reader or card read
punch. If RD is specified, the data control block cannot be used with any other
device type. When RD is coded, you can specify the following optional
parameters:

250 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

MODE=[C|E][O|R]
specifies the mode of operation for the card reader. You can specify:

C specifies that the cards to be read are in card image mode. In card
image mode, the 12 rows of each card column are read into 2
consecutive bytes of virtual storage. Rows 12 through 3 are read into
the 6 low-order bits of one byte, and rows 4 through 9 are read into the
6 low-order bits of the following byte.

E specifies that the cards to be read contain data in EBCDIC code.

O specifies that the program runs in optical mark read mode (3505 card
reader).

R specifies that the program runs in read-column-eliminate mode (3505
card reader and 3525 card punch, read feature).

Note: If the MODE parameter for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if
R or O is specified.

STACK={1 |2}
specifies the stacker bin into which the card is placed after being read. If
this parameter is omitted, stacker number 1 is used. You can specify:

1 specifies stacker number 1.

2 specifies stacker number 2.

FUNC={I|P|PW[XT]|R|RP[D]|RW[T]|RWP[XT][D]|W[T]}
defines the type of 3525 card punch data sets used. If the FUNC parameter
is omitted from all sources, a data set opened for input defaults to read
only, and a data set opened for output defaults to punch only. You can
specify:

D specifies that the data protection option is used. The data protection
option prevents punching information into card columns that already
contain data. When the data protection option is used, an 80-byte data
protection image (DPI) must be previously stored in SYS1.IMAGELIB.
Data protection applies only to the output punch portion of a read and
punch or read, punch, and print operation.

I specifies that the data in the data set is punched into cards and printed
on the cards. The first 64 characters are printed on line 1 of the card
and the remaining 16 characters are printed on line 3.

P specifies that the data set is for punching cards. See the description of
the character X for associated punch and print data sets.

R specifies that the data set is for reading cards.

T specifies that the two-line option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is
not specified, the multiline print option is used. This allows printing on
all 25 possible print lines. In either case, the data printed can be the
same as the data punched in the card, or it can be entirely different
data.

 Chapter 7. Non-VSAM Macro Descriptions 251

 DCB (QSAM)

W specifies that the data set is for printing. See the description of the
character X for associated punch and print data sets.

X specifies that an associated data set is opened for output for both
punching and printing. Coding the character X distinguishes the 3525
printer output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI)
must be specified in the FCB subparameter of the DD
statement for the data set.

Source: DEVD can be supplied only in the DCB macro. However, the
optional parameters can be supplied in the DCB macro, the DCB
subparameter of a DD statement, or by the problem program before
completion of the data control block exit routine.

DSORG={PS|PSU}
specifies the data set organization and whether the data set contains any
location-dependent information that makes it unmovable. You can specify:

PS
specifies a physical sequential data set.

PSU
specifies a physical sequential data set containing location-dependent
information that makes it unmovable.

Note: An unmovable data set cannot be SMS-managed. PDSEs cannot
be in unmovable data sets. See “NOTE—Provide Relative Position
(BPAM and BSAM—Tape and DASD Only)” on page 305 for more
information about unmovable data sets.

Source: You must code DSORG in the DCB macro.

EODAD=relexp
specifies the address of the routine given control when the end of an input data
set is reached. Control is given to this routine when a GET macro is issued and
there are no additional records to be retrieved. If the record format is
RECFM=FS or FBS the end-of-data condition is sensed when a file mark is
read or when more data is requested after reading a truncated block.

If the end of the data set is reached but no EODAD address was supplied to
the data control block (DCB) or DCBE, or if a GET macro is issued after an
end-of-data exit is taken, the task is abnormally terminated. For additional
information on the EODAD routine, see DFSMS/MVS Using Data Sets.

This end-of-data routine entry point specified in the DCB must reside below the
line. If you wish the entry point to reside above the line, use the EODAD
parameter of the DCBE macro. The EODAD routine (whether it is specified in
the DCBE or DCB) receives control in the addressing mode in which the GET
macro was issued. See the EODAD parameter description for the DCBE macro,
“DCBE—(BSAM, QSAM, and BPAM)” on page 261.

Source: EODAD can be supplied in the DCB macro or by the problem program
before the end of the data set has been reached.

EROPT={ACC|SKP|ABE }
specifies the action taken by the system if an uncorrectable input/output data
validity error occurs and no error analysis (SYNAD) routine address is provided.

252 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

Or, it specifies the action taken by the system after the error analysis routine
has returned control to the system with a RETURN macro. The specified action
is taken for input operations for all devices or for output operations to a printer.

Uncorrectable input/output errors resulting from channel operations or direct
access operations that make the next record inaccessible cause the task to be
abnormally terminated regardless of the action specified in the EROPT
parameter.

For HFS file processing, the system treats EROPT=ACC or EROPT=SKP as
EROPT=ABE.

You can specify:

ACC
specifies that the problem program accepts the block causing the error.
The system recognizes this option if the DCB is open for INPUT, RDBACK,
UPDAT, or OUTPUT (OUTPUT applies to printer data sets only).

SKP
specifies that the block causing the error is skipped. The system tries to
process the next block. If it also returns an uncorrectable I/O error, the
system again will use the SYNAD and EROPT parameters. The system
recognizes SKP if the OPEN macro option was for INPUT, RDBACK, or
UPDAT. If the device is a printer, the system treats EROPT=SKP as
EROPT=ABE.

ABE
specifies that the error results in the abnormal termination of the task. The
system recognizes this option if the DCB is open for INPUT, OUTPUT,
RDBACK, or UPDAT. If EROPT is omitted, the ABE action is assumed.

Note: If EROPT is ACC or SKIP, accept or skip processing is done after
returning from the error analysis (SYNAD) routine. For this reason, do
not issue FEOV from within the error analysis routine.

Source: EROPT can be specified in the DCB macro, in the DCB subparameter
of a DD statement, or by the problem program at any time. The problem
program can also change the action specified at any time.

EXLST=relexp
specifies the address of the DCB exit list. EXLST is required if the problem
program requires additional processing for user labels, user totaling, data
control block exit routines, end-of-volume, block count exits, defining a forms
control buffer (FCB) image, using the JFCBE exit (for the 3800 printer), or using
the DCB ABEND exit for abend condition analysis.

| The exit list must reside below the line. For the functions, format, and
| requirements of exit list processing, see DFSMS/MVS Using Data Sets. Exit
| routines can reside above the 16 MB line if you use the technique described in
| Figure 30 on page 170.

Source: EXLST can be supplied in the DCB macro or by the problem program
any time before the relevant function is needed.

LRECL={ absexp|X|0K|nnnnnK}
specifies the length, in bytes, for fixed-length records. Or, it specifies the
maximum length, in bytes, for variable-length or undefined-length (output only)

 Chapter 7. Non-VSAM Macro Descriptions 253

 DCB (QSAM)

records. The value specified in LRECL cannot exceed the value specified in
BLKSIZE except when variable-length spanned records are used.

Unblocked fixed-length records: the value specified in LRECL must be equal to
the value specified in BLKSIZE.

Blocked fixed-length records: The value specified in LRECL must be evenly
divisible into the value specified in BLKSIZE. LRECL is required for blocked
fixed-length records.

Variable-length records: the value specified in LRECL must include the
maximum data length (up to 32752 bytes) plus 4 bytes for the record-descriptor
word (RDW).

Undefined-length records: the problem program must insert the actual logical
record length into the DCBLRECL field before writing the record, or else the
maximum-length record is written.

Variable-length spanned records: the logical record length (LRECL) can exceed
the value specified in BLKSIZE, and a variable-length spanned record can
exceed the maximum block size (32760 bytes). When the logical record length
exceeds the maximum block size (for non-XLRI processing), you must specify
LRECL=X and use GET or PUT locate mode.

HFS files: record boundaries are not maintained within a binary HFS file. When
LRECL is not specified (by any source), it is defaulted to 80 on input.

ISO/ANSI/FIPS variable-length spanned records: (RECFM=DS or
RECFM=DBS), you can use the extended logical record interface (XLRI) when
the maximum logical record length exceeds 32760 bytes. XLRI must be
invoked by specifying LRECL=0K or LRECL=nnnnnK.

nnnnnK
specifies the size of the record area (in 1024-byte units) required to contain
the longest logical record of the data set. The value nnnnnK can range
from 1K to 16383K.

0K specifies that the length of the longest logical record must come from the
DD statement or the data set label. XLRI processing is only valid in QSAM
locate mode. You must not specify LRECL=X for RECFM=DS or DBS.

Note: When LRECL=0K is used in the DCB, the LRECL data must come
from JCL, the file label (for an input data set), or from the DCB exit
during open merge.

X specifies that the logical record length exceeds the maximum block size
(32760 bytes), and GET or PUT locate mode is used.

Source: LRECL can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before completion of the data
control block exit routine, or by the data set label of an existing data set. The
label indicates a logical record length of '99999' when an IBM standard label
tape contains a logical record equal to or greater than 100KB. The label
indicates '00000' if the same maximum is reached for an ISO/ANSI/FIPS label
tape.

Record length can be derived from the data class associated with the data set.
Record length can also be derived from the JCL keyword LIKE. However, if
LRECL is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

254 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

Although LRECL=0K is only valid when RECFM=DS or DBS, you can specify
the 0K option on the DCB macro even though the RECFM is not determined
until the DCB is opened. (The RECFM is obtained from the data set label or
the DD statement.) If you specify neither the DS nor the DBS option, the
system turns the 0K indicator off, and restores it when the DCB is closed.

MACRF={{(G{M|L|D}[C])}
 {(P{M|L|D}[C])}}
 {(G{M|L|D}[C],P{M|L|D}[C])}}

specifies the type of macros (GET, PUT or PUTX, CNTRL, RELSE, and
TRUNC) and the transmittal modes (move, locate, and data) used with the data
set being created or processed. The parameter can be coded in any of the
combinations shown above. You can specify:

C specifies that the CNTRL macro is used with the data set. If you specify C,
the device must be one of these described in “CNTRL—Control Directly
Allocated Input/Output Device (BSAM and QSAM)” on page 188. The
CNTRL option can be specified with GET in the move mode only. Use of
the CNTRL macro is invalid for 3525 input data sets.

D specifies that the data transmittal mode is used (only the data portion of a
record is moved to or from the work area). Data mode is used only with
variable-length spanned records.

G specifies that GET macros are used. Specifying G also provides the
routines that allow the problem program to issue RELSE macros. G is
required if the OPEN option is INPUT or UPDAT. It has no effect if the
OPEN option is OUTPUT or EXTEND.

L specifies that the locate transmittal mode is used; the system provides the
address of the buffer containing the data.

M specifies that the move transmittal mode is used; the system moves the
data from the buffer to the work area in the problem program.

P specifies that PUT or PUTX macros are used. Specifying P also provides
the routines that allow the problem program to issue TRUNC macros. P is
required if the OPEN option is OUTPUT or EXTEND. It has no effect if the
OPEN option is INPUT. P may be specified if the OPEN option is UPDAT.

Note: For data sets processed by QSAM using MACRF=(GM) or
MACRF=(PM), do not code BFTEK=A.

Source: MACRF can be supplied only in the DCB macro.

OPTCD={{B}
 {T}
 {U[C]}
 {C[T][B][U]}
 {H[Z][B]}
 {J[C][U]}
 {W[C][T][B][U]}
 {Z[C][T][B][U]}
 {Q[C][B][T]}
 {Z}}

specifies the optional services used with the sequential data set. Two of the
optional services, OPTCD=B and OPTCD=H, cannot be specified in the DCB
macro. They are requested in the DCB subparameter of a DD statement.

 Chapter 7. Non-VSAM Macro Descriptions 255

 DCB (QSAM)

Because all optional services codes must be supplied by the same source, you
must omit OPTCD from the DCB macro if either of these options is requested
in a DD statement.

You can code the following characters, in any order, and without commas
between characters:

C specifies that chained scheduling is used. OPTCD=C cannot be specified
when either BFTEK=A or BFTEK=R is specified for the same data control
block. Also, chained scheduling cannot be specified for associated data
sets or printing on a 3525 and is ignored for direct access storage devices.

Note: Except where it is not allowed, chained scheduling is used whether
requested or not. For conditions under which it is not allowed, see
DFSMS/MVS Using Data Sets .

J specifies that the first data byte in the output data line is a 3800 table
reference character. This table reference character selects a particular
character arrangement table for the printing of the data line and can be
used singly or with ISO/ANSI/FIPS or machine control characters. This
option has effect for DASD data sets, SYSOUT data sets, and a directly
allocated IBM 3800 Printing Subsystem. On DASD, this indication is saved
in the data set label and can be available to programs that read the data.
Note that for a partitioned data set, the OPTCD value applies to all
members. If the SYSOUT data set is printed on a device that does not
support table reference character, the system discards that byte. For
information on the table reference character and character arrangement
table, see IBM 3800 Printing Subsystem Programmer’s Guide

| Q requests conversion of the tape records between what is stored on tape
| and what is supplied from/to the problem program. For input requests,
| conversion is done after the data is read from tape. For output requests,
| conversion is done just before the record is written to tape.

| The Q option implies that the character representation of the data on tape
| differs from that seen by the problem program. Data management converts
| records according to one of the following techniques:

| � CCSID Conversion

| If CCSIDs are supplied from any source for ISO/ANSI V4 tapes,
| records are converted between the CCSID which represents the data
| on tape and the CCSID as seen by the problem program. You can also
| prevent conversion by supplying a special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied
| by any source, data management converts the records between ASCII
| code (which represents the data on tape) to EBCDIC code (which is
| seen by the problem program) using specific tables defined for this
| default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete
| description of CCSID conversion and Default Character conversion.

| See DFSMS/MVS Using Magnetic Tapes for more information about
| ISO/ANSI labels.

256 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

| Q is supported only for a magnetic tape that does not have IBM standard
| labels. If the tape has ISO/ANSI labels (LABEL=(,AL)), the system assumes
| OPTCD=Q.

| Q is supported only for a magnetic tape that does not have IBM standard
| labels. If the tape has ISO/ANSI/FIPS labels (LABEL=(,AL)), the system
| assumes OPTCD=Q.

T requests the user totaling function. If this function is requested, EXLST
should specify the address of an exit list that includes a totaling entry. T
cannot be specified for a SYSIN or SYSOUT data set.

Note: User totaling is supported for only sequential data sets that are not
extended format data sets. If specified for a partitioned data set, a
PDSE, an extended format data set, or an HFS file, user totaling is
ignored.

U unblocks data checks (permits them to be recognized as errors) and allows
analysis by the appropriate error analysis routine (SYNAD exit routine). If
the U option is omitted, data checks are not recognized as errors. This
option has effect only for a printer with the universal-character-set feature
(UCS) or the IBM 3800 Printing Subsystem.

For magnetic tape drives, sets to “tape write immediate” mode.

W specifies, for DASD, that the system performs a validity check on each
block written on a direct access storage device.

OPTCD=W is ignored for PDSEs, extended format data sets, and HFS
files.

The system reads each block back. The intent is to ensure that the data
would survive a subsequent power failure. Because of the performance
degradation and the reliability of modern IBM devices and recovery
techniques, IBM recommends not coding OPTCD=W.

For buffered tape devices, device end interrupt is given only when a block
is physically on the device. By specifying OPTCD=W with buffered devices,
you do not benefit from the performance advantage of buffering.

Z requests for magnetic tape input only, that the system shorten its normal
error recovery procedure to consider a data check as a permanent I/O error
after five unsuccessful attempts to read a record. OPTCD=Z is used when
a tape is known to contain errors and there is no need to process every
record. The error analysis routine (SYNAD) should keep a count of
permanent errors and terminate processing if the number becomes
excessive.

For other devices, the Z option is ignored.

Note: The following optional services can be specified in the DCB
subparameter of a DD statement. If either of these options are
requested, the complete OPTCD parameter must be supplied in the DD
statement.

B forces the end-of-volume (EOV) routine to disregard the end-of-file
recognition for magnetic tape. When this occurs, the EOV routine uses the
number of volume serial numbers to determine end of file. For an input
data set on a standard labeled (SL or AL) tape, the EOV routine treats EOF
labels as EOV labels until the volume serial list is exhausted. After all the

 Chapter 7. Non-VSAM Macro Descriptions 257

 DCB (QSAM)

volumes have been read, control is passed to your end-of-data routine.
This option allows SL or AL tapes to be read out of volume sequence or to
be concatenated to another tape using one DD statement.

H specifies that the VSE/MVS interchange feature is being used with the data
set.

Source: OPTCD can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, in the data set label for direct access storage devices, or by
the problem program before completion of the DCB open exit routine or JFCBE
exit routine. However, all optional services must be requested from the same
source.

RECFM={{U[T][A|M]}
 {V[B][S][T][A|M]}
 {D[B][S][A]}
 {F[B|S|T|BS|BT][A|M]}}

specifies the record format and characteristics of the data set being allocated or
processed. All record formats can be used in QSAM. You can specify:

A specifies that the records in the data set contain ISO/ANSI/FIPS control
characters. For a description of control characters, see Appendix C,
“Control Characters” on page 407.

B specifies that the data set contains blocked records.

| D specifies that the data set contains variable-length tape records with BDWs
| in ASCII format. See OPTCD=Q and BUFOFF for a description of how to
| specify these types of data sets.

F specifies that the data set contains fixed-length records.

M specifies that the records in the data set contain machine code control
characters. For a description of control characters, see Appendix C,
“Control Characters” on page 407. RECFM=M cannot be used with ASCII
data sets.

S specifies, for fixed-length records, that the records are written as standard
blocks. Except for the last block or track in the data set, the data set does
not contain any truncated blocks or unfilled tracks. Do not code S to
retrieve fixed-length records from a data set that was allocated using a
RECFM other than standard.

For variable-length records, S specifies that a record can span more than
one block.

T specifies that track overflow is used with the data set. Track overflow allows
a record to be written partially on one track and the remainder of the record
on the following track (if required).

Note: This is an obsolete option. The system ignores it.

U specifies that the data set contains undefined-length records.

Note: Format-U records are not supported for Version 3 ISO/ANSI/FIPS
tapes. An attempt to process a format-U record for a Version 3 tape
results in a label validation installation exit being taken.

ISO/ANSI Version 1 (ISO 1001-1969 or ANSI X3.27-1969) format-U records
can be used for input only. These records are the same as the format-U

258 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCB (QSAM)

records described above, except that the control characters must be
ISO/ANSI control characters, and block prefixes can be used.

V specifies that the data set contains variable-length records.

Note:

� Do not specify RECFM=FS or RECFM=FBS for a partitioned data
set or PDSE, because it will cause an abend.

� RECFM=V cannot be specified for a card reader data set or an
ISO/ANSI/FIPS tape data set.

� RECFM=VS, VBS, DS, or DBS cannot be specified for a SYSIN
data set.

� RECFM=VS or VBS cannot be specified for an HFS file.

� RECFM=DS or RECFM=DBS provides blocking, unblocking, and
segmenting for Version 3 ISO/ANSI/FIPS tape data sets.

Source: RECFM can be supplied in the DCB macro, in the DCB subparameter
of a DD statement, by the problem program before completion of the data
control block exit routine, or by the data set label of an existing data set.

Record format can be derived from the data class associated with the data set.
Record format can also be derived from the JCL keyword LIKE. However, if
RECFM is specified in the DCB macro, it overrides the value derived from data
class or LIKE. For more information, see OS/390 MVS JCL Reference.

SYNAD=relexp
| specifies the address of the error analysis (SYNAD) routine given control if an
| uncorrectable input/output error occurs. The entry point of this SYNAD routine
| must reside below the line. If you wish the entry point to reside above the line,
| use the SYNAD parameter of the DCBE macro. You can also use the
| technique shown in Figure 30 on page 170. The contents of the registers when
| the error analysis routine is given control are described in “Status Information
| Following an Input/Output Operation” on page 393.

| The system detects I/O errors asynchronously but calls your SYNAD routine
| synchronously when you issue a GET macro for the failed block or when you
| issue a PUT macro that requires the buffer containing the failed block.

| The error analysis routine must not use the save area pointed to by register 13.
| The system does not restore registers when it regains control from the error
| analysis routine. The error analysis routine can issue a RETURN macro that
| uses the address in register 14 to return control to the system.

| If the error analysis routine returns and the error condition was the result of a
| data-validity error, the control program takes the action specified in the EROPT
| parameter; otherwise, the task is abnormally terminated. The control program
| takes these actions when SYNAD is omitted in the DCB and DCBE or when
| the error analysis routine returns control.

| SYNAD receives control in the addressing mode in which the GET or PUT
| macro was issued. On return from the SYNADAF or SYNADRLS macro issued
| in the SYNAD routine, the high order byte of register 15 will be unpredictable.
| Therefore, callers of SYNADAF or SYNADRLS in 31-bit addressing mode must
| either not use register 15 as a base register or restore the high order bytes on
| return from SYNADAF or SYNADRLS.

 Chapter 7. Non-VSAM Macro Descriptions 259

 DCBD

| Source: SYNAD can be supplied in the DCB macro or by the problem
| program. The problem program can also change the error routine address at
| any time.

DCBD—Provide Symbolic Reference to Data Control Blocks (BDAM,
BISAM, BPAM, BSAM, QISAM, and QSAM)

The DCBD macro generates a dummy control section that provides symbolic
names for the fields in one or more data control blocks. The DCBD macro maps
the assembler version of the DCB. Symbols generated by the DCBD macro include
some that are not part of the intended programming interface. The names and
attributes of the general-use fields appear as part of the description of each data
control block in “Data Control Block Symbolic Field Names” on page 394. Attributes
of the symbolically named fields in the dummy section are the same as the fields in
the data control blocks, except for fields containing 3-byte addresses. The
symbolically named fields containing 3-byte addresses have length attributes of 4
and are aligned on fullword boundaries.

The symbols generated by the DCBD macro should not be defined in your user
program. The symbols are structured as DCBxxxxx, where DCB is the first 3
characters and xxxxx is 1 to 5 alphanumeric characters.

The name of the dummy control section generated by a DCBD macro is IHADCB.
A USING instruction specifying IHADCB and a dummy section base register must
precede the symbolic names in the dummy section. The dummy section base
register contains the address of the actual data control block. You can issue the
DCBD macro only once in any assembled module. However, you can use the
resulting symbolic names for any number of data control blocks by changing the
address in the dummy section base register. You can code the DCBD macro at any
point in a control section. However, if it is coded at any point other than at the end
of a control section, you must code a CSECT instruction to resume the control
section.

The format of the DCBD macro is:

DSORG=({GS|(dsorglist)})
specifies the types of data control blocks for which symbolic names are
provided. If the DSORG parameter is omitted, the DEVD parameter is ignored,
and symbolic names are provided only for the 'foundation block' portion that is
common to all data control blocks.

GS
specifies a data control block for graphics. This parameter cannot be used
in combination with any of the below.

dsorglist
You can specify one or more of the following values (each value must be
separated by a comma):

BS
specifies a data control block for BSAM.

b DCBD [DSORG=({GS|(dsorglist)})]
 [,DEVD=(devlist)]

260 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCBE

DA
specifies a data control block for BDAM. Although this option is
supported, its use is not recommended.

IS specifies a data control block for BISAM and QISAM. Although this
option is supported, its use is not recommended.

LR
specifies a dummy section for the logical record length field
(DCBLRECL) only.

PO
specifies a data control block for BPAM.

PS
specifies a data control block for BSAM and QSAM. PS includes both
BS and QS.

QS
specifies a data control block for QSAM.

DEVD=(devlist)
specifies the types of devices on which the data set can reside. If DEVD is
omitted and BS, QS, or PS is specified in DSORG, symbolic names are
provided for all the device types listed below.

devlist
You can specify one or more of the following values (each value must be
separated by a comma). If you specify more than one value, they must
have parentheses around them.

DA Direct access storage device
PC Directly-allocated card punch (not SYSOUT)
PR Directly-allocated printer (not SYSOUT)
RD Directly-allocated card reader or read punch feed (not spooled)
TA Magnetic tape
MR Magnetic character reader

DCBE—(BSAM, QSAM, and BPAM)
The DCB extension (DCBE) expands the functions provided by the DCB. The
DCBE must reside in storage that you can access and modify. This storage may be
located above or below the 16MB line independently of whether you are executing
in 31-bit addressing mode. The DCBE is specified via the DCBE parameter of the
DCB macro.

The DCBE must not be shared by multiple DCBs that are open. After the DCB is
successfully closed, the user may open a different DCB pointing to the same
DCBE. Your program may refer to DCBE fields symbolically by using the IHADCBE
mapping macro and the DCBDCBE address in the DCB (using the DCBD mapping
macro).

| The IHADCBE macro does not currently support any parameters. It creates a
| DSECT named DCBE. The fields are described in “Data Control Block Extension
| (DCBE)” on page 406.

OPEN will set a flag (DCBEMD31) in the DCBE if 31-bit SAM is supported. You
may test the DCBEMD31 flag during the DCB OPEN exit routine or any time until
CLOSE. In a concatenation, if you turned on the DCB unlike attributes bit before

 Chapter 7. Non-VSAM Macro Descriptions 261

 DCBE

using OPEN, then OPEN will set DCBEMD31 on if the current access supports
data above the line. If you did not turn on the DCB unlike attributes bit, then OPEN
will set DCBEMD31 on if all the data sets in the concatenation support data above
the line. Otherwise, OPEN will set DCBEMD31 off.

The purpose of this test is to allow you to determine that the SAM 31-bit interfaces
will not work for the data set being opened. DCBEMD31 also will remain off on a
DFP level that supports none of the SAM 31-bit interfaces.

The value of DCBEMD31 does not specify whether an OPEN or CLOSE issuer or
parameter list may be the 31-bit type.

Each DCBE parameter description contains a heading, “Source.” The information
under this heading describes when you may set the parameter.

The format of the DCBE macro is:

RMODE31={BUFF|NONE}
specifies whether you request that OPEN get QSAM buffers above the 16MB
line (RMODE31=BUFF) or not (RMODE31=NONE) when acquiring buffers
automatically. The default is NONE. If BFTEK=A is specified in the DCB,
OPEN also gets the QSAM logical record interface (LRI) area above the 16MB
line. CLOSE will free these buffers and the LRI area, if it exists.

In releases prior to DFSMS/MVS 1.1, FREEPOOL is typically issued after
CLOSE since CLOSE does not free the QSAM 24-bit buffers. However, if
OPEN honors your request for buffers above the 16MB line, you should either
avoid the FREEPOOL macro, or reassemble the program with the FREEPOOL
macro. At DFSMS/MVS 1.1, the FREEPOOL expansion tests whether the
buffer pool exists before attempting to free it.

The RMODE31=BUFF parameter has no effect if any of the following are true:

� BUFCB is specified on the DCB macro.

� Buffer pool is built by a GETPOOL, BUILD, or BUILDRCD macro or a
previous OPEN.

| � Access method is BSAM or BPAM.

� OPEN leaves DCBEMD31 as zero.

Source: You may set this parameter in the DCBE macro or in the DCB OPEN
exit routine. It should not be changed while the DCB is open except when the
DCB OPEN exit is reentered for each data set in a concatenation where you
have set on the DCB unlike attributes bit.

EODAD=relexp
specifies the address of an end-of-data routine given control when the end of
an input data set is reached. The entry point may be above the line or below

[label] DCBE [RMODE31={BUFF|NONE}]
[,EODAD= relexp]
[,SYNAD= relexp
[,GETSIZE={YES|NO}]
[,PASTEOD={YES|NO }] [,NOVER={YES|NO }]
[,MULTACC= n
[,MULTSDN=n

262 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCBE

the line. If the EODAD routine resides above the line, you must issue all
CHECKs or GETs in 31-bit addressing mode.

An EODAD address in the DCBE will take precedence over an EODAD
address in the DCB. The EODAD routine (whether it is specified in the DCBE
or DCB) will get control in the addressing mode in which the CHECK or GET is
issued.

If the record format is RECFM=FS or FBS, the end-of-data condition is
detected when a file mark is read or when more data is requested after reading
a truncated block.

If the end of data block is reached but no EODAD address was supplied in
either the DCBE or DCB, or if a GET macro is issued after an end-of-data exit
is taken, the task is abnormally terminated. For additional information on the
EODAD routine, see DFSMS/MVS Using Data Sets. You may also refer to the
EODAD parameter in the appropriate DCB macro.

Source: EODAD can be supplied in the DCBE macro or by the problem
program before the end of the data set has been reached.

SYNAD=relexp
specifies the address of an error analysis (SYNAD) routine given control when
an uncorrectable input/output error occurs. The entry point may be above the
line or below the line. If the SYNAD routine resides above the line, you must
issue all CHECKs, GETs, or PUTs in 31-bit addressing mode.

A SYNAD address in the DCBE will take precedence over a SYNAD address in
the DCB. The SYNAD routine (whether it is specified in the DCBE or DCB) will
get control in the addressing mode in which the CHECK, GET, or PUT is
issued.

If an uncorrectable input/output error is encountered but no SYNAD routine was
supplied in either the DCBE or DCB, the task is abnormally terminated. For
additional information on the SYNAD routine see DFSMS/MVS Using Data Sets
. You may also refer to the SYNAD parameter in the appropriate DCB macro.

Source: SYNAD can be supplied in the DCBE macro or by the problem
program. The problem program can also change the error routine address at
any time.

GETSIZE={YES|NO}
specifies that OPEN is to calculate the number of blocks in the data set and
store this number in the DCBE (DCBESIZE). In most cases this is an estimate.
With concatenated data sets the number is for only the current data set. As you
read through the data sets, the system changes this number.

Note: For a compressed format data set, the number of physical blocks in the
data set will differ from the number of user blocks found in the data set.
DCBESIZE will refer to the number of user blocks found in the data set.

DCBESIZE is valid after OPEN and on entry to the user's DCB OPEN exit
routine. However, for compressed format data sets, DCBESIZE will not be valid
until after OPEN.

This parameter is ignored if the data set is not extended format data sets or
HFS files.

For HFS files,

 Chapter 7. Non-VSAM Macro Descriptions 263

 DCBE

� If GETSIZE=YES is specified, DCBEXSIZ (an 8-byte value) is set to the
approximate number of blocks in the file based on DCBRECFM and
DCBBLKSI.

GETSIZE is not supported for FIFO or character special files. DCBEXSIZ is
set to 0.

Source: You may set this parameter in the DCBE macro.

PASTEOD={YES|NO}
specifies that the end-of-data marker of the extended format data set, which is
saved when the data set is open for INPUT, UPDATE, OUTIN, or INOUT is to
be ignored. The default is NO.

This parameter is ignored if the data set is not an extended format data set.
This parameter is ignored if the data set is open for other than INPUT, INOUT,
UPDAT, or OUTIN.

For extended format data sets, the system saves the end-of-data marker of the
data set when the data set is opened for input or update. If the data set is
opened for output while it is still open for input (without specifying
PASTEOD=YES), the input DCB will not see any of the records which may
have been written past the end-of-data marker by the output DCB.
PASTEOD=YES allows the input DCB to read past the end-of-data marker of
the data set which was saved when the data set was opened. This allows the
input DCB to read records which may have been written past the end-of-data
marker by another DCB.

Source: You may set this parameter in the DCBE macro or in the DCB OPEN
exit routine. It should not be changed while the DCB is open.

NOVER={YES|NO}
specifies that OPEN should bypass any verification to determine whether the
size of the stripes of an extended format data set are consistent. The default is
NO.

Inconsistent stripes could be caused by inadvertently restoring one or more
stripes of an extended format data set without restoring all stripes.

In general, OPEN will use the longest stripe to be the end of the file if you
specify NOVER=YES. However, if the longest stripe fills a track and a later
stripe ends in the middle of that same relative track, OPEN will assume the
shorter stripe to be the true data set end.

This parameter is ignored if the data set is not an extended format data set.

Source: You may set this parameter in the DCBE macro or in the DCB OPEN
exit routine. It should not be changed while the DCB is open.

MULTACC=n
allows the system to process BSAM I/O requests more efficiently by not starting
I/O until a number of buffers have been presented to BSAM.

A nonzero value indicates to OPEN that BSAM can do a more efficient type of
queuing of (accumulation) of READ or WRITE requests. If you code a nonzero
value, your program must not issue a WAIT or EVENTS macro against a DECB
unless you preceded it with issuance of a TRUNC macro. If you code a
nonzero value but your program issues a WAIT or EVENTS macro against a
DECB for the DCB and the program has not issued a TRUNC after the
previous READ or WRITE, the program may go into an unending wait.

264 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DCBE

| If your program follows the rules for MULTACC use but the data set type does
| not support it, the program will still run correctly.

| If you code a nonzero value, OPEN calculates a default number of READ or
| WRITE requests that you are suggesting the system queue more efficiently.
| First OPEN calculates the number of BLKSIZE-length blocks that can fit on a
| track. OPEN then multiplies this value by the MULTACC value and, for an
| extended format data set, by the number of stripes. The system will try to defer
| starting I/O requests until you have issued this many READ or WRITE requests
| for the DCB. BSAM will never queue (defer) more READ or WRITE requests
| than the NCP value set in OPEN.

| MULTACC has an effect only for BSAM DASD non-spooled, and non-PDSE
| data sets. In the current release it has no effect for other types of data sets or
| HFS files.

MULTACC has no effect for compressed format data sets. The user may issue
WAITs in this case. However, it is recommended that users not take advantage
of this characteristic of compressed format data sets (that WAIT may be issued
although MULTACC is specified) because it will not work reliably for other types
of data sets and, in future levels of the system, it may not work with
compressed format data sets.

Source: You may set MULTACC in the DCBE macro or in the DCB OPEN exit
routine. This parameter should not be changed while the DCB is open except
when the DCB OPEN exit is reentered for each data set in a concatenation
where you have set on the DCB unlike attributes bit.

MULTSDN=n
requests a system-defaulted NCP.

If nonzero and DCBNCP is zero, the system will calculate an appropriate initial
NCP value. The system will then multiply this value by the number specified in
MULTSDN and store this value in DCBNCP. DCBNCP will be set before the
DCB OPEN exit routine is given control. This allows you to give the system
indicators without being dependent on device information such as blocks per
track or number of stripes. If DCBNCP is zero after returning from the OPEN
exit, the SDN will be derived or re-derived after the OPEN exit and stored in
DCBNCP.

For DASD data sets which are not extended format data sets, the initial NCP
value will be the number of DCBBLKSI-length blocks that can fit on a track.

For extended format data sets (not in the compressed format), the initial NCP
value will be the number of DCBBLKSI-length blocks (plus the suffix) that can
fit on a track times the number of stripes. For compressed format data sets, the
initial NCP value is 1 because 1 is the most efficient value.

For HFS files, if MULTSDN is specified (and DCBNCP is not specified),
DCBNCP is set to the value specified by MULTSDN. Currently, the initial NCP
value is set to 5.

Note: This parameter will be ignored if DCBBLKSI is 0 after the DCB OPEN
exit routine returns to the system.

The NCP limit is 255.

Source: You may set MULTSDN in the DCBE macro or in the DCB OPEN exit
routine. This parameter should not be changed while the DCB is open except

 Chapter 7. Non-VSAM Macro Descriptions 265

 DESERV

when the DCB OPEN exit is reentered for each data set in a concatenation
where you have set on the DCB unlike attributes bit.

DESERV—Directory Entry Services (BPAM)
The DESERV macro performs operations on PDS and PDSE directories.

The DESERV FUNC= parameter specifies the function requested such as

� GET—retrieve directory information for a PDS or PDSE given a list of names or
BLDL entry

� GET_ALL—retrieve all member names and directory entries from a PDSE or
PDS

� RELEASE—removes PDSE connections established by previous DESERV
functions such as GET and GET_ALL

� GET NAMES—gets a list of names and associated directory data for a member
of a PDSE

� RENAME PDSE members and alias names

� DELETE PDSE entries

� UPDATE selected fields of program object directory entries.

DESERV returns directory information in system managed directory entry (SMDE)
format depending upon the type of request you specify. The SMDE contains
reformatted PDS2 information for a PDS member plus additional information for a
PDSE program object. See DFSMS/MVS Using Data Sets for more information on
using the DESERV functions.

The DESERV macro may be issued in 24- or 31-bit addressing mode. In either
case, all addresses must be valid 31-bit addresses.

The DESERV exit and the PUT function are not documented here. See
DFSMS/MVS DFSMSdfp Advanced Services for more information on these
functions.

The syntax for each DESERV function is shown below. Figure 31 on page 269 and
Figure 32 on page 270 show the parameters which are either required, optional, or
invalid for each of the DESERV functions. The parameter descriptions follow the
figures. The return and reason codes for each DESERV function are shown in the
figures that follow the parameters.

The parameter list is cleared for the execute form of DESERV (MF=E) if the
COMPLETE parameter is specified. This can be used to reset previously used
parameters. You are responsible for initializing the parameter list by copying MF=L
to dynamic storage for use in MF=E.

 DESERV—Function=DELETE
DESERV FUNC=DELETE deletes member names and aliases from a PDSE
directory. When a member name is deleted, all alias names are automatically
deleted.

The format of the DESERV FUNC=DELETE macro is:

266 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DESERV

[label] DESERV FUNC=DELETE
,DCB=data_control_block
,NAME_LIST=(input_list,input_list_entry_count)
[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]

 DESERV—Function=GET
DESERV FUNC=GET retrieves directory entry information for a list of names or a
BLDL directory entry that you provide. The directory entries are returned in system
managed directory entry (SMDE) format.

The format of the DESERV FUNC=GET macro is:

[label] DESERV FUNC=GET
,AREA=(buffer_area, buffer_area_size)|
 ,AREAPTR=buffer_area_address
 [,SUBPOOL= subpool_id]
[,BYPASS_LLA={YES |NO}]
[,CONN_ID=connection_identifier]
,CONN_INTENT=HOLD
,DCB=data_control_block
[,ENTRY_GAP={ gap_size|0}]
{,NAME_LIST=(input_list,input_list_entry_count)|
 PDSDE=BLDL_directory_entry}
[,MF={(E,parmlist_name[,NOCHECK |COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]

 DESERV—Function=GET_ALL
DESERV FUNC=GET_ALL retrieves SMDEs for all member names (primary and
alias) of a PDSE and can establish connections to members.

The format of the DESERV FUNC=GET_ALL macro is:

[label] DESERV FUNC=GET_ALL
,AREAPTR=buffer_area_address
[,CONCAT={ concat_number|ALL}]
[,CONN_ID=connection_identifier]
[,CONN_INTENT={NONE |HOLD}]
,DCB=data_control_block
[,ENTRY_GAP={ gap_size|0}]
[,HIDE={YES |NO}]
[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]
[,SUBPOOL= subpool_id]

 Chapter 7. Non-VSAM Macro Descriptions 267

 DESERV

 DESERV—Function=GET_NAMES
DESERV FUNC=GET_NAMES, obtains a list of all names and associated data for
a member of a PDSE.

The format of the DESERV FUNC=GET_NAMES macro is:

[label] DESERV FUNC=GET_NAMES
,AREAPTR=buffer_area_address
[,CONCAT=concat_number]
,DCB=data_control_block
,NAME=name_record
[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]
[,SUBPOOL= subpool_id]

 DESERV—Function=RELEASE
DESERV FUNC=RELEASE removes connections established by GET or GET_ALL
functions.

The format of the DESERV FUNC=RELEASE macro is:

[label] DESERV FUNC=RELEASE
{CONN_ID=connection_identifier\
 DE_LIST=(input_list,input_list_entry_count)}
,DCB=data_control_block
[MF={(E,parmlist_name[,NOCHECK|COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]

 DESERV—Function=RENAME
DESERV FUNC=RENAME renames member and alias names in a PDSE.

The format of the DESERV FUNC=RENAME macro is:

[label] DESERV FUNC=RENAME
,DCB=data_control_block
,NAME_LIST=(input_list,input_list_entry_count)
[,MF={(E,parmlist_name[,NOCHECK|COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]

 DESERV—Function=UPDATE
DESERV FUNC=UPDATE allows you to update selected attributes of program
objects in a PDSE. See the DESERV UPDATE function in DFSMS/MVS Using
Data Sets for more information on the fields which can be updated.

The format of the DESERV FUNC=UPDATE macro is:

268 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DESERV

[label] DESERV FUNC=UPDATE
,DCB=data_control_block
,NAME_LIST=(input_list,input_list_entry_count)
[,MF={(E,parmlist_name[,NOCHECK |COMPLETE])|
 S}]
[,RETCODE=return_code]
[,RSNCODE=reason_code]

 DESERV—List Form
DESERV MF=L is the list form of the DESERV macro.

The format of the DESERV MF=L macro is:

Figure 31 and Figure 32 on page 270 show the DESERV macro parameters and
indicate for each function if the parameter is required, optional, or invalid. The
figure applies to the MF=S (standard) forms of the macro, or to the logically merged
MF=L and MF=E parameters.

[label] DESERV [parms...]
,MF=L

Figure 31. DESERV keyword parameters by function

Keyword /
FUNC= GET GET_ALL RELEASE GET_NAMES

AREA Optional Invalid Invalid Invalid

AREAPTR Optional Required Invalid Required

BYPASS_LLA Optional Invalid Invalid Invalid

CONCAT Invalid Optional Invalid Optional

CONN_ID Optional Optional Optional Invalid

CONN_INTENT Required Optional Invalid Invalid

DCB Required Required Required Required

DE_LIST Invalid Invalid Optional Invalid

ENTRY_GAP Optional Optional Invalid Invalid

FUNC Required Required Required Required

HIDE Invalid Optional Invalid Invalid

MF Optional Optional Optional Optional

NAME Invalid Invalid Invalid Required

NAME_LIST Optional Invalid Invalid Invalid

PDSDE Optional Invalid Invalid Invalid

RETCODE Optional Optional Optional Optional

RSNCODE Optional Optional Optional Optional

SUBPOOL Optional Optional Invalid Optional

 Chapter 7. Non-VSAM Macro Descriptions 269

 DESERV

AREA=(buffer_area,buffer_area_size)
buffer_area—MF=S form, RX Type Address or (2-12))

| buffer_area— MF=L form, A-Type Address)
buffer_area—MF=E form, RX Type Address or (2-12)
buffer_area_size—Symbol or (2-12)
Specifies an area provided by the caller into which the GET function stores
directory entries.

The area is mapped by the DESB DSECT in the IGWDES mapping macro on
return from the function. The storage must be modifiable in the key of the
caller.

If the area is filled before the processing has ended, then the request is
terminated at that point. The entries in the buffers are valid and connections
may have been established.

buffer_area_size is the length in bytes of the area specified in the buffer_area
parameter.

AREA and AREAPTR are mutually exclusive.

Note: There is no way in advance to determine the exact buffer size required
to contain the directory entries on a single request. A formula for length
calculation is provided in Figure 33 on page 271.

Figure 32. DESERV keyword parameters by function

Keyword / FUNC= UPDATE RENAME DELETE

AREA Invalid Invalid Invalid

AREAPTR Invalid Invalid Invalid

BYPASS_LLA Invalid Invalid Invalid

CONCAT Invalid Invalid Invalid

CONN_ID Invalid Invalid Invalid

CONN_INTENT Invalid Invalid Invalid

DCB Required Required Required

DE_LIST Invalid Invalid Invalid

ENTRY_GAP Invalid Invalid Invalid

FUNC Required Required Required

HIDE Invalid Invalid Invalid

MF Optional Optional Optional

NAME Invalid Invalid Invalid

NAME_LIST Required Required Required

PDSDE Invalid Invalid Invalid

RETCODE Optional Optional Optional

RSNCODE Optional Optional Optional

SUBPOOL Invalid Invalid Invalid

270 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DESERV

FORMULA:
buffer_area_size = L'DESB_FIXED +
(input_list_entry_count * (SMDE_MAXLEN + gap_size))

WHERE:

buffer_area_size is the storage required to hold input_list_entry_count number of
entries.

DESB_FIXED is the fixed (header) portion of the buffer. It is a constant defined by
the IGWDES macro.

SMDE_MAXLEN is a constant defined by macro IGWSMDE that defines the current maximum
size of a single SMDE entry. NOTE: this is a very large value since
names can be up to 1024 bytes in length.

gap_size is the value specified by the ENTRY_GAP parameter on the GET or GET_ALL
function.

input_list_entry_count is the value passed on the NAME_LIST parameter for the number of entries
in the list or 1 if PDSDE is specified.

Figure 33. Buffer size calculation for GET function.

AREAPTR=buffer_area_address
MF=S form, RX Type Address or (2-12)

| MF=L form, A-Type Address
MF=E form, RX Type Address or (2-12)
specifies a fullword where GET, GET_ALL, and GET_NAMES, store the
address of the first DESB buffer output.

The buffer-area address points to a chain of buffers mapped by the DESB
mapping in the IGWDES mapping macro on return from the function.

The subpool number for the storage obtained is placed in the buffer header.
See the description of the SUBPOOL keyword for subpool value determination.

It is your responsibility to release the storage using the STORAGE or
FREEMAIN macro.

If you issue a DESERV call from below the 16MB line, the address returned is
below the line. If you issue the call from above the 16MB line, the address
returned is above the line.

AREAPTR and AREA are mutually exclusive.

BYPASS_LLA={YES | NO }
indicates whether the GET function should bypass LLA's cached directory
entries and go only to the current library directory or use LLA's cached directory
entries if they are available.

BYPASS_LLA=YES indicates that the LLA cache is not examined.
BYPASS_LLA=NO, the default, indicates that the LLA cache is examined
before attempting to obtain information directly from the data set.

This is an optional parameter to the GET function.

Currently, the GET_ALL function does not obtain member list from LLA.
Therefore, the directory entries come directly from the data set as though
BYPASS_LLA=YES were specified.

Note: Better response time is provided if directory entries are obtained from
LLA.

CONCAT={concat_number|ALL}
MF=S form, RX Type Address or (2-12)

| MF=L form, A-Type Address

 Chapter 7. Non-VSAM Macro Descriptions 271

 DESERV

MF=E form, RX Type Address or (2-12)
specifies the library concatenation.

concat_number
specifies for the GET_ALL and GET_NAMES function the specific library in
a concatenation of libraries. DESERV returns all the member names.
concat_number is a numeric value in the range of 0 to 255.

This is an optional parameter and the default is the first library in the
concatenation (that is, 0).

ALL
specifies (for the GET_ALL function only) to return all the names in each
PDS or PDSE directory in the concatenation. DESERV returns a list of
directory entries which contains a merged list of SMDEs from each data set
in the concatenation where duplicate member names have been eliminated.

CONN_ID=connection_identifier
MF=S form, RX Type Address or (2-12)

| MF=L form, A-Type Address
MF=E form, RX Type Address or (2-12)
specifies the location of the 4-byte value used by the GET, GET_ALL, and
RELEASE functions. connection_identifier is a token that relates connections to
a particular invocation of a function. It may indicate a number of connections or
no connections at all.

For the RELEASE function, CONN_ID is an input parameter and is mutually
exclusive with DE_LIST.

For the GET and GET_ALL functions, CONN_ID is an output parameter.

CONN_ID is meaningful only when one or more of the designated libraries are
PDSEs.

Note: A maximum of 65536 connection identifiers per DCB can exist
simultaneously. The identifier is freed for reuse by using the RELEASE
function by CONN_ID. The identifier is not freed when using DE_LIST
if the CONN_ID parameter was specified on the GET or the GET_ALL
functions.

CONN_INTENT={NONE|HOLD}
Specifies the intent of the connection to be used by the GET and GET_ALL
functions when a connection is requested.

Intent Result
NONE No connection is to be established.
HOLD Minimal connection to preserve access to the member (or system

key/supervisor state only).

This parameter is required by the GET function since a connect intent of NONE
is not valid. CONN_INTENT=HOLD must be specified for the GET function.

This parameter is optional and defaults to a connect intent of NONE when used
with the GET_ALL function. CONN_INTENT=HOLD for the GET_ALL function
requires the caller to be in supervisor state or system key .

CONN_INTENT is meaningful only when one or more of the designated
libraries are PDSEs.

272 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DESERV

DCB=data_control_block
specifies the DCB that identifies the libraries to be used for the particular
function. data_control_block is an open data control block.

For the RENAME, DELETE, and UPDATE functions the DCB must be open for
OUTPUT or UPDAT. For all other functions the DCB must be open for INPUT,
OUTPUT, or UPDAT.

DE_LIST=(input_list,input_list_entry_count)
| specifies a list of directory entries that identify connections to members that the
| RELEASE function is to release. The storage must be addressable in the key
| of the caller.

| input_list

| input_list specifies a list of entries mapped by the DESL structure.

| input_list_entry_count

| input_list_entry_count contains the number of entries in the list.

| For the RELEASE function, DE_LIST is mutually exclusive with CONN_ID.

ENTRY_GAP=({gap_size|0})
specifies space to be reserved by the GET and GET_ALL functions within each
buffer entry for use by the caller.

| gap_size

gap_size is a numeric value from 0 to 2048.

The length specified is placed in the header area of the DESB.

FUNC={DELETE|GET|GET_ALL|GET_NAMES|RELEASE|RENAME|UPDATE}
specifies the particular function to be performed.

HIDE= YES| NO
is used for the GET_ALL function to indicate if hidden names are to be visible
in the name search. Hidden names are names generated by the Program
Management Binder when you specify ALIASES(ALL)

Hidden names are normally used only for Program Management binding
purposes, and are supported only for program objects in PDSE libraries. As a
single program object can contain many hidden names and as these names do
not represent executable entry points into a module, they are of little interest to
end users. Utilities and other programs which list or display member names and
aliases typically omit hidden aliases.

YES
DESERV searches for and returns only exposed names (names specified
during Program Management binding).

NO
DESERV searches for and returns all names types.

NO is the default for the HIDE parameter.

MF={L | E,parm_list[,NOCHECK| COMPLETE]| S}
specifies how the macro should generate its code.

 Chapter 7. Non-VSAM Macro Descriptions 273

 DESERV

L specifies the list form of the macro. This form generates an inline
parameter list, initializes the eye catcher, length, level of parameter, and
optionally, sets some static parameters.

E specifies the Execute form of the macro. This form updates a parameter list
and transfers control to the service routine.

The third argument, COMPLETE or NOCHECK, is optional. The default is
COMPLETE. This argument specifies whether required keyword checking is
to be done. If MF=E is coded with the NOCHECK argument, the macro
does not check that all required keywords have been specified. If MF=E is
coded with the COMPLETE argument (or COMPLETE is allowed to default)
the parameter list is cleared to binary zeros (except the header portion, the
first 16 (X'10') bytes), and checking is done for all required parameters.

S specifies the Standard form of the macro. This form generates a complete
inline expansion of the parameter list, checks for all required and invalid
keywords, and invokes the specified function. It should not be used in
refreshable or reentrant code sections.

parm_list—RX-type Address or (2-12)

specifies the address of the parameter list. Valid for the MF=E form of the
DESERV macro only.

NAME=name_record
MF=S form, RX Type Address or (2-12)

| MF=L form, A- Type Address
MF=E form, RX Type Address or (2-12)
specifies the member name on the GET_NAMES function. name_record is a
varying length byte string of at most 1024 bytes of data. The structure is
mapped by the DESN mapping in the IGWDES mapping macro.

name_record specifies either the primary or any of the alias names when used
for the GET_NAMES function.

NAME_LIST=(input_list,input_list_entry_count)
is used with the GET, DELETE, RENAME, UPDATE functions. For GET, it
defines the names for which directory entries are to be obtained and points to
the output directory entries. For DELETE, it defines the names which are to be
deleted. For RENAME, it defines the old names and the new names. For
UPDATE, it defines the directory entries which are to be updated.

NAME_LIST is mutually exclusive with the PDSDE parameter.

| input_list

input_list specifies a list of entries.

The input_list structure is mapped by the DESL mapping in the IGWDES
mapping macro.

| input_list_entry_count

input_list_entry_count contains the number of entries in the list.

PDSDE=BLDL_directory_entry
MF=S form, RX Type Address or (2-12)

| MF=L form, A-Type Address

274 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 DESERV

MF=E form, RX Type Address or (2-12)
specifies a BLDL format directory entry to be used by the GET function to
obtain a connection to PDSE member. The member locator token (MLT) for a
PDSE member, and concatenation number in the directory entry are used to
identify the member. If the concatenation number identifies a PDS, the input
BLDL directory entry is converted to SMDE format without searching any
directories.

PDSDE is mutually exclusive with the NAME_LIST parameter.

RETCODE=return_code
MF=S form, RX Type Address or (2-12)
MF=E form, RX Type Address or (2-12)
specifies the name of the variable where the function is to store the return code
associated with the result of the function invocation. return_code is a four byte
value. If RETCODE= is not specified, the return code is returned in register 15.

See “DESERV Completion Codes” on page 276 for valid return code values.

RSNCODE=reason_code
MF=S form, RX Type Address or (2-12)
MF=E form, RX Type Address or (2-12)
specifies the name of the variable where the function is to store the reason
code associated with the result of the function invocation. The high order two
bytes of the reason code contain the component id (x'27') and the module
identifier of the module which detected the error. The low order two bytes of the
reason code contain the actual reason code values. If RSNCODE= is not
specified, the reason code is returned in register 0.

See “Reason Codes returned by the DESERV Macro” on page 276 for reason
code values.

SUBPOOL=subpool_id
MF=S form, RX Type Address or (2-12)

| MF=L form, A-Type Address
MF=E form, RX Type Address or (2-12)
specifies the subpool identifier to be used by the function when acquiring
storage for the buffer. subpool_id is a byte value that is optional on the GET,
GET_ALL, and GET_NAMES functions.

The actual key and subpool used to acquire storage are:

� If the subpool is specified and is not a user subpool and the caller is NOT
authorized (KEY or STATE) the request is rejected as an error.

� If the subpool is specified and is not a user subpool and the caller is
authorized the storage is obtained with the subpool specified and the
caller's key. This technique assumes that the subpool/key combination is
valid. An error occurs if the combination is invalid.

� If the subpool is specified and is a user subpool the storage is obtained
with the subpool specified in task key.

� If the subpool is NOT specified the storage is obtained with the subpool 0
in task key.

� If the subpool specified is 0 and the caller is executing in key 0, the storage
returned is in subpool 250.

 Chapter 7. Non-VSAM Macro Descriptions 275

DESERV Completion Codes
The DESERV macro return codes with their descriptions are shown below, followed
by the reason codes. The reason codes are grouped by DESERV macro function.

When the system returns control to the problem program, the return code is in the
area identified by the RETCODE= parameter or register 15 and the reason code is
in the area identified by the RSNCODE= parameter or register 0. The significant
part of the reason code is in the low-order 2 bytes.

The symbols included in the descriptions below for the return and reason codes (for
example, DESRC_SUCC) are contained in the macro IGWDES.

A system return code (DESRC_SEVE (36(X'24'))) should be considered to be a
terminating error. The reason codes associated with DESRC_SEVE are for
Diagnosis, Modification, and Tuning Information (DMTI) and are contained in
DFSMS/MVS DFSMSdfp Diagnosis Reference.

Return Codes returned by the DESERV Macro

Figure 34. DESERV Return Codes

Return Code Name Meaning

00(X'00') DESRC_SUCC Successful processing.

04(X'04') DESRC_INFO Not completely successful.

08(X'08') DESRC_WARN. Results questionable.

12(X'0C') DESRC_PARM Missing or invalid parameters.

16(X'10') DESRC_CALR Caller has a problem.

20(X'14') DESRC_ENVR Resources unavailable.

24(X'18') DESRC_IOER I/O error.

28(X'1C') DESRC_MEDE Media error.

32(X'20') DESRC_DSLE Data Set logical error.

36(X'24') DESRC_SEVE System error. See DFSMS/MVS DFSMSdfp Diagnosis Reference
for DESERV system codes.

Reason Codes returned by the DESERV Macro
DESERV reason codes returned from the macro invocation are four byte values.
The values listed here are the low order two byte values. The high order two bytes
are used for diagnostic purposes and should not be tested by your program.

The reason codes below are separated by DESERV function. The return codes
shown in each figure below are described above.

276 DFSMS/MVS V1R5 Macro Instructions for Data Sets

DESERV Functions Common Reason Codes

Figure 35. DESERV Functions Common Reason Codes

Return Code
Reason
Code Name Meaning

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

12(X'0C') 1041(X'411') DESRS_INVALID_PARM_LIST_HEADER The id, length, or level of the
parameter list is invalid.

12(X'0C') 1054(X'41E') DESRS_INVALID_DEB_PTR Address of the DEB is 0 or DEB is
input but the DCB pointed to by the
DEB does not point back to the DEB.

12(X'0C') 1057(X'421') DESRS_DCB_NOT_OPEN The passed DCB is not open.

12(X'0C') 1058(X'422') DESRS_INVALID_DCB_PTR The address of the DCB is zero.

12(X'0C') 1059(X'423') DESRS_DEB_REQUIRES_AUTH To pass the DEB the caller must be
supervisor state or a system key.

12(X'0C') 1060(X'424') DESRS_UNSUPPORTED_FUNC The FUNC value is incorrect.

16(X'10') 1053(X'41D') DESRS_DEBCHK_FAILED The DEBCHK macro failed. The DCB
or DEB is invalid.

DESERV GET Function Reason Codes

Figure 36 (Page 1 of 2). DESERV GET Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

04(X'04') 1001(X'3E9') DESRS_MODULE_BUFFERED_LLA The module is buffered by LLA, no
connection is established.

04(X'04') 1002(X'3EA') DESRS_NOTFOUND Some members not found.

04(X'04') 1020(X'3FC') DESRS_CANT_GET_FILELOCK File lock unavailable, possible
sharing problem.

12(X'0C') 1003(X'3EB') DESRS_C370LIB_SMDE_ME The SMDE parameter is mutually
exclusive with C370LIB(YES).

12(X'0C') 1004(X'3EC') DESRS_SMDE_PTR_INVALID For GETTYPE=SMDE, the input
pointer is zero.

12(X'0C') 1005(X'3ED') DESRS_AREA_AREAPTR_ME AREA and AREAPTR are mutually
exclusive.

12(X'0C') 1010(X'3F2') DESRS_C370LIB_PDSDE_ME C370LIB(YES) and PDSDE are
mutually exclusive.

12(X'0C') 1051(X'41B') DESRS_PDSDE_PTR_INVALID Address of the PDSDE is 0.

12(X'0C') 1070(X'42E') DESRS_INVALID_ENTRY_GAP The gap specified is too large. This
gap must be no larger than
DESP_ENTRY_GAP_MAX.

12(X'0C') 1071(X'42F') DESRS_AREA_LENGTH_TOO_SMALL The length of the area provided is
insufficient. For the GET function this
area length must be larger than the
fixed portion of the DESB.

 Chapter 7. Non-VSAM Macro Descriptions 277

Figure 36 (Page 2 of 2). DESERV GET Function Reason Codes

Return Code
Reason
Code Meaning Name

12(X'0C') 1073(X'431') DESRS_INVALID_AREA_PTR The address of a DESB provided is
0.

12(X'0C') 1074(X'432') DESRS_INVALID_GETTYPE The GET function accepts only a
NAME_LIST or a PDSDE. Neither is
provided.

12(X'0C') 1076(X'434') DESRS_NAME_LIST_COUNT_INVALID The count of entries in the
NAME_LIST is 0.

12(X'0C') 1077(X'435') DESRS_NAME_LIST_@_INVALID The address of the NAME_LIST
structure is 0.

12(X'0C') 1078(X'436') DESRS_INVALID_CONN_INTENT The connect intent specified is not
valid with this function.

16(X'10') 1006(X'3EE') DESRS_DCB_NOT_OPEN_PO The DCB is not opened with
DSORG=PO. This applies only to the
GET function when C370LIB(YES).

16(X'10') 1009(X'3F1') DESRS_BAD_BLKSIZE DCBBLKSI is too small.

16(X'10') 1046(X'416') DESRS_INSUF_BUFFER_SIZE Area provided is too small.

16(X'10') 1061(X'425') DESRS_INVALID_NAME_LENGTH The length of an alias name is either
0 or greater than 1024. The length of
a primary name is 0 or greater than
8.

20(X'14') 1035(X'40B') DESRS_FREEMAIN_ERROR FREEMAIN failed.

24(X'18') 1034(X'40A') DESRS_CONVERT_ERROR Error converting TTR to CCHHR.

24(X'18') 1086(X'43E') DESRS_ECB_POSTED_ERROR An I/O error was received, the post
code in the ECB was unexpected.

32(X'20') 1007(X'3EF') DESRS_BAD_C370LIB_DIR The C370LIB directory indicates that
a symbol is associated with a
member name but that name does
not exist in the PDS directory.

32(X'20') 1008(X'3F0') DESRS_BAD_TXT_CARD Inconsistencies found in the text
records, while processing a C370LIB
directo

DESERV GET_ALL Function Reason Codes

Figure 37 (Page 1 of 2). DESERV GET_ALL Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

08(X'08') 1012(X'3F4') DESRS_DIRECTORY_EMPTY No members in directory.

12(X'0C') 1045(X'415') DESRS_PDS_NOT_SUPPORTED This function requires a PDSE data
set.

278 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Figure 37 (Page 2 of 2). DESERV GET_ALL Function Reason Codes

Return Code
Reason
Code Meaning Name

12(X'0C') 1052(X'41C') DESRS_INVALID_CONCAT The concatenation number specified
is greater than the concatenation
number of the last data set in the
concatenation.

12(X'0C') 1070(X'42E') DESRS_INVALID_ENTRY_GAP The gap specified is too large. The
gap must be larger than
DESP_ENTRY_GAP_MAX.

12(X'0C') 1072(X'430') DESRS_INVALID_AREAPTR_PTR The address of the AREAPTR is 0.

12(X'0C') 1078(X'436') DESRS_INVALID_CONN_INTENT The connect intent specified is not
valid with this function.

16(X'10') 1011(X'3f3') DESRS_CONN_AUTH The CONN_INTENT(HOLD) requires
the caller of function GET_ALL to be
in supervisor state or system key.

20(X'14') 1035(X'40B') DESRS_FREEMAIN_ERROR FREEMAIN failure.

DESERV GET_NAMES Function Reason Codes

Figure 38. DESERV GET_NAMES Function Reason Codes

Return Code
Reason
Code Name Meaning

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

08(X'08') 1002(X'3EA') DESRS_NOTFOUND Some members not found.

12(X'0C') 1045(X'415') DESRS_PDS_NOT_SUPPORTED This function requires a PDSE data
set.

12(X'0C') 1052(X'41C') DESRS_INVALID_CONCAT The concatenation number specified
is greater than the concatenation
number of the last data set.

12(X'0C') 1061(X'425') DESRS_INVALID_NAME_LENGTH The length of an alias name is either
0 or greater than 1024, or the length
of a primary name is 0 or greater
than 8.

12(X'0C') 1062(X'426') DESRS_INVALID_NAME_PTR The address of the NAME parameter
is 0.

12(X'0C') 1072(X'430') DESRS_INVALID_AREAPTR_PTR The address of the AREAPTR is 0.

20(X'14') 1035(X'40B') DESRS_FREEMAIN_ERROR FREEMAIN failure.

DESERV RELEASE Function Reason Codes

Figure 39 (Page 1 of 2). DESERV RELEASE Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

 Chapter 7. Non-VSAM Macro Descriptions 279

Figure 39 (Page 2 of 2). DESERV RELEASE Function Reason Codes

Return Code
Reason
Code Meaning Name

08(X'08') 1019(X'3FB') DESRS_CONNECTION_NOT_FOUND The connection specified in the
SMDE could not be found. Probable
user error.

12(X'0C') 1066(X'42A') DESRS_INVALID_RELEASE_TYPE The RELEASE function must be
specified with the CONN_ID
parameter or the DE_LIST
parameter.

12(X'0C') 1067(X'42B') DESRS_INVALID_CONN_ID_PTR The address of the CONN_ID
parameter is 0.

12(X'0C') 1068(X'42C') DESRS_INVALID_DE_LIST_CNT The number of entries in the
DE_LIST is 0.

12(X'0C') 1069(X'42D') DESRS_INVALID_DE_LIST_PTR The address of the DE_LIST
parameter is 0.

16(X'10') 1018(X'3FA') DESRS_DESL_SMDE_PTR The SMDE for the release function
had a null pointer or the eye catcher
is invalid.

DESERV UPDATE Function Reason Codes

Figure 40. DESERV UPDATE Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

08(X'08') 1002(X'3EA') DESRS_NOTFOUND Some members not found

08(X'08') 1014(X'3F6') DESRS_MULTIPLE_ERRORS More than one error has occurred.
Check the codes in DESL.

12(X'0C') 1045(X'415') DESRS_PDS_NOT_SUPPORTED This function requires a PDSE data
set.

12(X'0C') 1062(X'426') DESRS_INVALID_NAME_PTR The address of the parameter is 0.

12(X'0C') 1076(X'434') DESRS_NAME_LIST_COUNT_INVALID The count of entries in the
NAME_LIST is 0.

12(X'0C') 1077(X'435') DESRS_NAME_LIST_@_INVALID The address of NAME_LIST structure
is 0

16(X'10') 1061(X'425') DESRS_INVALID_NAME_LENGTH The length of a name is either 0 or
greater than 8.

DESERV DELETE Function Reason Codes

Figure 41 (Page 1 of 2). DESERV DELETE Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

280 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Figure 41 (Page 2 of 2). DESERV DELETE Function Reason Codes

Return Code
Reason
Code Meaning Name

08(X'08') 1002(X'3EA') DESRS_NOTFOUND Some members not found.

08(X'08') 1014(X'3F6') DESRS_MULTIPLE_ERRORS More than one error occurred. Check
the codes in DESL.

12(X'0C') 1045(X'415') DESRS_PDS_NOT_SUPPORTED This function requires a PDSE data
set

12(X'0C') 1062(X'426') DESRS_INVALID_NAME_PTR The address of the parameter is 0

12(X'0C') 1076(X'434') DESRS_NAME_LIST_COUNT_INVALID The count of entries in the
NAME_LIST is 0.

12(X'0C') 1077(X'435') DESRS_NAME_LIST_@_INVALID The address of a NAME_LIST
structure is 0

16(X'10') 1061(X'425') DESRS_INVALID_NAME_LENGTH The length of a name is either 0 or
greater than 8.

DESERV RENAME Function Reason Codes

Figure 42. DESERV RENAME Function Reason Codes

Return Code
Reason
Code Meaning Name

00(X'00') 0000(X'00') DESRS_SUCC Successful processing.

08(X'08') 1002(X'3EA') DESRS_NOTFOUND Some members not found

08(X'08') 1014(X'3F6') DESRS_MULTIPLE_ERRORS More than one error occurred. Check
the codes in DESL.

08(X'08') 1040(X'410') DESRS_INVALID_NAME_PREFIX The first 8 bytes of the name were all
X'FF'.

08(X'08') 1108(X'454') DESRS_BOTH_NAMES_SAME A FUNC=RENAME request specified
a new name and an old name which
were the sam

08(X'08') 1110(X'456') DESRS_NEW_NAME_EXISTS A FUNC=RENAME request specified
a new name which already exists in
the pdse.

12(X'0C') 1045(X'415') DESRS_PDS_NOT_SUPPORTED This function request is not a PDSE
data set

12(X'0C') 1062(X'426') DESRS_INVALID_NAME_PTR The address of the name parameter
is 0.

12(X'0C') 1076(X'434') DESRS_NAME_LIST_COUNT_INVALID The count of entries in the
NAME_LIST is 0.

12(X'0C') 1077(X'435') DESRS_NAME_LIST_@_INVALID The address of NAME_LIST structure
is 0

16(X'10') 1061(X'425') DESRS_INVALID_NAME_LENGTH The length of a name is either 0 or
greater than 8.

20(X'14') 1083(X'43B') DESRS_CLOCK_ERROR An STCK instruction failed.

 Chapter 7. Non-VSAM Macro Descriptions 281

 FEOV

ESETL—End Sequential Retrieval (QISAM)
Use of the ESETL macro is not recommended because it is a QISAM macro; we
recommend you use VSAM instead.

The ESETL macro ends the sequential retrieval of data from an indexed sequential
data set and causes the buffers associated with the specified data control block to
be released. An ESETL macro must separate SETL macros issued for the same
data control block.

The format of the ESETL macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the indexed
sequential data set being processed.

[label] ESETL dcb address

FEOV—Force End-of-Volume (BSAM and QSAM)
The FEOV macro causes the system to assume an end-of-volume condition, and
switches volumes automatically. You can specify volume positioning for magnetic
tape with the REWIND or LEAVE option. If no option is coded, the positioning
specified in the OPEN macro is used. Output labels are created as required and
new input labels are verified. The standard exit routines are given control as
specified in the data control block exit list. For BSAM, you must test all input and
output operations for completion before issuing the FEOV macro. The end-of-data
(EODAD) routine is given control if an input FEOV macro is issued for the last

| volume of an input data set and another data set is not concatenated.

If the current data set is part of a concatenation and you are on the last or only
volume, the system switches to the next data set. If you are at the end of the last
data set, the end-of-data routine is given control. If the EODAD routine is needed
but you did not specify one, the FEOV issues ABEND 337-04.

FEOV is ignored if issued for a SYSIN or SYSOUT data set.

FEOV treats an HFS file or a striped data set as a single volume data set which
cannot be extended to additional volumes.

The FEOV macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses. If it causes
entry to the end-of-data (EODAD) routine, the EODAD routine is entered in the
addressing mode in which you issue FEOV.

Note: When processing a DCB open for output which specifies QSAM locate
mode and the buffers are above the 16MB line (DCBE RMODE31=BUFF is
specified), FEOV should be issued in 31-bit addressing mode.

The format of the FEOV macro is:

[label] FEOV dcb address
[,REWIND|,LEAVE]

282 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 FIND

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for an opened sequential data
set.

REWIND
requests the system position the tape that you are leaving at the load point
regardless of the direction of processing.

LEAVE
requests the system position the tape at the logical end of the data set on the
volume that you are leaving. This option positions the tape at a point after the
tape mark that follows the trailer labels. Note that multiple tape units must be
available to achieve this positioning. If only one tape unit is available, its
volume is rewound and unloaded.

Note: If an FEOV macro is issued for a multivolume data set with spanned
records that is being read using QSAM, errors might occur when the
next GET macro is issued following an FEOV macro if the first segment
on the new volume is not the first segment of a record. The errors
include duplicate records, program checks in your user program, and
invalid input from the variable spanned data set.

Note: Do not use the FEOV macro in the error analysis routine (SYNAD).

FIND—Establish the Beginning of a Data Set Member (BPAM)
The FIND macro causes the system to use the address of the first block of a
specified partitioned data set member as the starting point for the next READ
macro for the same data set. All previous input and output operations that specified
the same data control block must have been tested for completion before the FIND
macro is issued.

When used with a PDSE, the FIND macro establishes a connection to a PDSE
member. If FIND by relative address (C option) was specified, the connection
remains until the PDSE is closed. If FIND by name (D option) was specified, the
connection remains until you position to another member.

If the PDSE is open for output, close it and reopen it for input or update processing
before issuing the FIND macro. See DFSMS/MVS Using Data Sets for more
information on using the FIND macro and PDSE connections.

The FIND macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

Note: If the DCB points to a DCBE which resides above the 16MB line, the FIND
macro must be issued in 31-bit addressing mode.

The format of the FIND macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened partitioned data
set being processed.

[label] FIND dcb address
,{name address,D|ttrc address,C}

 Chapter 7. Non-VSAM Macro Descriptions 283

 FIND

name address—RX-Type Address, (2-12), or (0)
specifies the address of an 8-byte field that contains the data set member
name. The name must start in the first byte and be padded on the right (if
necessary) to complete the 8 bytes. The name address may point above or
below the 16MB line.

D specifies that only a member name has been supplied, and the access method
must search the directory of the data set indicated in the data control block to
find the location of the member.

ttr address—RX-Type Address, (2-12), or (0)
specifies the address of a 4-byte area that contains the 3-byte relative address
(TTR) and a 1 byte concatenation number (C). The TTRC address can point to
the TTRC field in a BLDL list entry completed by using a BLDL macro for the
data set being processed.

C specifies that a TTRC address has been supplied, and no directory search is
required. The TTRC address supplied is used directly by the access method for
the next input operation.

Note: Do not use the FIND macro after WRITE and STOW processing without first
closing the data set and reopening it for INPUT processing.

FIND Completion Codes
For ttrc address, C, when the system returns control to the problem program, the
contents of register 15 are set to 0. If the TTRC address is in error, execution of
the next CHECK macro causes control to be passed to the error analysis (SYNAD)
routine.

For name address, D, when the system returns control to the problem program, the
3 high-order bytes of registers 0 and 15 are set to 0, the low-order byte of register
15 contains one of the following return codes and the low-order byte of register 0
contains one of the following reason codes:

Return Code
(15)

Reason
Code (0) Meaning

00 (X'00') 00 (X'00') Successful execution.

04 (X'04') 00 (X'00') Name not found.

04 (X'04') 04 (X'04') The caller has only RACF execute authority to the PDSE.

04 (X'04') 08 (X'08') The PDSE member's share options do not allow you to access it.

04 (X'04') 12 (X'0C') The PDSE is open for output and the FIND macro was issued to point to a
member other than the one currently processing.

08 (X'08') 00 (X'00') Permanent I/O error during directory search.

08 (X'08') 04 (X'04') Insufficient virtual storage available.

08 (X'08') 08 (X'08') Invalid DEB, or DEB is not owned by a TCB in the current family of TCBs.

08 (X'08') 12 (X'0C') An I/O error occurred while flushing system buffers containing member data
(PDSE only).

08 (X'08') 16 (X'10') No DCB address was input.

284 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 FREEDBUF

FREEBUF—Return a Buffer to a Pool (BDAM, BISAM, BPAM, and
BSAM)

The FREEBUF macro causes the system to return a buffer to the buffer pool
assigned to the specified data control block. The buffer must have been acquired
using a GETBUF macro.

The FREEBUF macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.
FREEBUF does not support buffers above the line.

The format of the FREEBUF macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for an opened data set to which
the buffer pool has been assigned. When issued in 31-bit addressing mode, the
input DCB address and buffer address must be clean 31-bit addresses.

register—(2-12)
specifies one of registers 2 through 12 that contains the address of the buffer
being returned to the buffer pool.

[label] FREEBUF dcb address
 ,register

FREEDBUF—Return a Dynamically Obtained Buffer (BDAM and
BISAM)

Use of the FREEDBUF macro is not recommended.

The FREEDBUF macro causes the system to return a buffer to the buffer pool
assigned to the specified data control block. The buffer must have been acquired
through dynamic buffering; that is, by coding 'S' for the area address in the
associated READ macro. FREEDBUF does not support buffers above the line.

Note: A buffer acquired dynamically can also be released by a WRITE macro.
See the description of the WRITE macro for BDAM or BISAM.

The FREEDBUF macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.
Both FREEDBUF parameters must reside below the 16MB line, so FREEDBUF will
ignore the high-order bytes of their addresses.

The format of the FREEDBUF macro is:

decb address—RX-Type Address, (2-12), or (0)
specifies the address of the data event control block (DECB) used or created
by the READ macro that acquired the buffer dynamically. When issued in 31-bit
addressing mode, the buffers must reside below the 16MB line.

[label] FREEDBUF decb address
 ,{K|D}
 ,dcb address

 Chapter 7. Non-VSAM Macro Descriptions 285

 GET

K specifies that BISAM is being used.

D specifies that BDAM is being used.

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened data set being
processed.

FREEPOOL—Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The FREEPOOL macro releases an area of storage, previously acquired for a
buffer pool for a specified data control block. The area must have been acquired
either automatically (except when dynamic buffer control is used) or by executing a
GETPOOL macro. For queued access methods, you must issue a CLOSE macro
for all the data control blocks using the buffer pool before issuing the FREEPOOL
macro. For basic access methods, you can issue the FREEPOOL macro when the
buffers are no longer required. A buffer pool need be released only once,
regardless of the number of data control blocks sharing the buffer pool.

The FREEPOOL macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

When you request that OPEN obtain QSAM buffers above the 16MB line by coding
RMODE31=BUFF on the DCBE macro, CLOSE will free the buffer pool.

If you issue a FREEPOOL macro for a DCB that does not have a buffer pool, the
FREEPOOL has no effect.

FREEPOOL does not support buffers above the line.

The format of the FREEPOOL macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of a data control block to which the buffer pool is
assigned. When issued in 31-bit addressing mode, the input DCB address must
be a clean 31-bit address.

[label] FREEPOOL dcb address

GET—Obtain Next Logical Record (QISAM)
Use of the GET (QISAM) macro is not recommended. We recommend you use
VSAM instead.

The GET macro retrieves (reads) the next record. Control is not returned to the
problem program until the record is available.

The format of the GET macro is:

[label] GET dcb address
 [,area address]

286 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened input data set
being retrieved.

area address—RX-Type Address, (2-12), or (0)
specifies the storage address into which the system is to move the record
(move mode only). Either the move or locate mode can be used with QISAM,
but they must not be mixed in the specified data control block. The following
describes operations for move and locate modes:

Locate Mode: If locate mode is specified in the data control block, the area
address must be omitted. The system returns the address of the buffer
segment containing the record in register 1.

Move Mode: If move mode is specified in the data control block, the area
address must specify the address in the problem program into which the
system will move the record. If the area address is omitted, the system
assumes that register 0 contains the area address. When control is returned to
the problem program, register 0 contains the area address, and register 1
contains the address of the data control block.

Notes:

1. The end-of-data-set (EODAD) routine is given control if the end of the data set
is reached. The data set can be closed if processing is completed, or an
ESETL macro must be issued before a SETL macro to continue further input
processing.

2. The error analysis (SYNAD) routine is given control if the input operation could
not be completed successfully. The contents of the general registers when
control is given to the SYNAD user exit routine are described in DFSMS/MVS
Using Data Sets.

3. When the key of an unblocked record is retrieved with the data, the address of
the key is returned as follows (see the SETL macro):

Locate Mode: The address of the key is returned in register 0.

Move Mode: The key appears before the record in your buffer area.

4. If a GET macro is issued for a data set and the previous request issued for the
same data set was an OPEN, ESETL, or unsuccessful SETL (no record found),
then a SETL B (key and data) is invoked automatically, and the first record in
the data set is returned.

GET—Obtain Next Logical Record (QSAM)
The GET macro retrieves (reads) the next record. Various modes are available and
are specified in the DCB macro. In the locate mode, the GET macro instruction
locates the next sequential record or record segment to be processed. The system
returns the address of the record in register 1 and places the length of the record
or segment in the logical record length (DCBLRECL) field of the data control block.
The DCBLRECL field is not changed when GET is used in XLRI processing. You
can process the record in the input buffer or move the record to a work area.

In move mode, the GET macro moves the next sequential record to your work
area. This work area must be large enough to contain the largest logical record of
the data set and its record-descriptor word (variable-length records). The system

 Chapter 7. Non-VSAM Macro Descriptions 287

 GET

returns the address of the work area in register 1. The record length is placed in
the DCBLRECL field. You can use move mode only with simple buffering.

In data mode, which is available only for variable-length spanned records, the GET
macro moves only the data portion of the next sequential record to your work area.
You cannot use the TYPE=P parameter with data mode.

| Data Conversion

| You can request conversion by coding LABEL=(,AL) or (,AUL) in the DD statement,
| or by coding OPTCD=Q in the DCB macro or DCB subparameter of the DD
| statement. When conversion is requested, all records whose record format (RECFM
| parameter) is F, FB, D, DS, DB, DBS, or U are automatically converted from one
| character representation to another when the input buffer is full. Conversion is
| performed according to one of the following techniques:

| � Coded Character Set Identifier (CCSID) Conversion

| If CCSIDs are supplied from any source4 for ISO/ANSI V4 tapes, records are
| converted from the CCSID which represents the data on tape to the CCSID as
| seen by the problem program. You can also prevent conversion by supplying a
| special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied by any
| source, data management converts the records from ASCII code to EBCDIC
| code using specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete description of
| CCSID conversion and Default Character conversion.

The GET macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses. This
includes allowing the caller to issue QSAM macros in 31-bit addressing mode
regardless of whether the buffers are above or below the 16MB line. Most types of
data sets support 31-bit mode. See “31-Bit Addressing Mode” on page 165.

QSAM allows data areas to be located above the 16MB line. To take advantage of
providing data areas above the 16MB line for QSAM macros, the issuer of the GET
macro must then execute in 31-bit addressing mode. To take advantage of QSAM
buffers above the line, you must specify for OPEN to obtain the buffers above the
line and the issuer of the GET macro must then execute in 31-bit addressing mode.
To specify that OPEN is to get buffers above the 16MB line, code
RMODE31=BUFF on the DCBE macro.

The format of the GET macro is:

[label] GET {dcb address|pdab address}
[,area address]
[,TYPE=P]

| 4 CCSID may be supplied in the CCSID subparameter of a JOB, EXEC, or DD statement or the tape label.

288 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GET

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened input data set
being retrieved.

pdab address—RX-Type Address, (2-12), or (1)
specifies the address of the parallel data access block for the opened input
data sets from which a record is retrieved. When pdab address is used,
TYPE=P must be coded.

area address—RX-Type Address, (2-12), or (0)
specifies the address of an area into which the system is to move the record
(move or data mode). The move, locate, or data mode can be used with
QSAM, but must not be mixed in the specified data control block. When issued
in 31-bit addressing mode, the input area address (move or data mode) must
be clean 31-bit addresses. For move or data mode, if the input area address
resides above the 16MB line, you must issue the GET in 31-bit mode. If you
requested that OPEN get buffers above the 16MB line, the GET must be
issued in 31-bit mode. If the area address is omitted in the move or data mode,
the system assumes that register 0 contains the area address. The following
describes the operation of the three modes:

Locate Mode: If locate mode is specified in the data control block, the area
address must be omitted. The system returns the address of the beginning
buffer segment containing the record in register 1. If the data set is open for
RDBACK, register 1 points to the last byte of the record. This address remains
valid until you issue the next GET, FEOV, RELSE, or CLOSE macro for the
DCB. Reasons why the address might become invalid include the system may
be reading new data into the old buffer or the system may have freed the
buffer.

When retrieving variable-length spanned records, and the logical record
interface (LRI) or extended logical record interface (XLRI) is not used, the
records are obtained one segment at a time. The problem program must
retrieve additional segments by issuing subsequent GET macros, except when
a logical record interface is requested (by specifying BFTEK=A in the DCB
macro, by issuing a BUILDRCD macro, or by specifying DCBLRECL=0K or
nnnnnK in the DCB macro). In this case, the control program retrieves all
record segments and assembles the segments into a complete logical record.
The system returns the address of this record area in register 1.

When the maximum logical record length is greater than 32756 bytes,
LRECL=X must be specified in the data control block, and the problem program
must assemble the segments into a complete logical record. LRECL=X or
segment mode processing is not allowed for ISO/ANSI spanned records,
RECFM=DS or RECFM=DBS.

Move Mode: If move mode is specified in the data control block, the area
address specifies the beginning address of an area in the problem program into
which the system moves the record. If the data set is open for RDBACK, the
area address specifies the ending address of an area in the problem program.

If move mode is specified in the data control block, do not code BFTEK=A.

For variable-length spanned records, the system constructs the
record-descriptor word in the first 4 bytes of the area and assembles one or
more segments into the data portion of the logical record area; the segment

 Chapter 7. Non-VSAM Macro Descriptions 289

 GET

descriptor words are removed. When XLRI mode is used, the record descriptor
word (RDW) in the record area is a fullword value.

Data Mode: If data mode is specified in the data control block (data mode can
be specified for variable-length spanned records only), the area address
specifies the address of the area in the problem program into which the system
moves the data portion of the logical record. A record-descriptor word is not
constructed when data mode is used. TYPE=P cannot be used with data mode.

Extended Logical Record Interface (XLRI): When the GET macro is used in
XLRI mode, the address returned in register 1 points to a fullword record length
value. The 3 low-order bytes of the fullword indicate the length of the complete
logical record plus 4 bytes for the fullword.

XLRI mode requires a record area to assemble a complete logical record from
the segments that are read.

If a record area is not automatically obtained by OPEN processing, you can
construct a record by using the BUILDRCD macro before issuing the OPEN.
The DCB LRECL field indicates the length of the area in 'K' units (1024 bytes)
required to contain the longest logical record of the data set.

Note: If spanned records extend across volumes, errors might occur when
using the GET macro if a volume that begins with a middle or last
record segment is mounted first, or if an FEOV macro is issued followed
by a GET macro. QSAM cannot begin reading from the middle of the
record. (This applies to move mode, data mode, and locate mode if
logical record interface is specified.)

TYPE=P
TYPE=P and pdab address are used to retrieve a record from a queue of input
data sets that have been opened. The open and close routines add and delete
DCB addresses in the queue. The DCB from which a record is retrieved can be
located from information in the PDAB. For this purpose, the formatting macro,
PDABD, should be used. When pdab address is used, TYPE=P must be
coded. The TYPE=P parameter is not supported for 31-bit callers.
Unpredictable results may occur.

GET Routine Exits
The end-of-data-set (EODAD) routine is given control if the end of the data set is
reached; the data set must be closed. Issuing a GET macro in the EODAD routine
results in abnormal termination of the task.

The error analysis (SYNAD) routine is given control if the input operation could not
be completed successfully due to an uncorrectable I/O error. The contents of the
general registers when control is given to the SYNAD exit routine are described in
“Status Information Following an Input/Output Operation” on page 393.

If your SYNAD or EODAD routine is entered, it is entered in the addressing mode
in which the GET was issued. If you supplied a SYNAD or EODAD routine which
resides above the line in the DCBE, then the GET must be issued in 31-bit
addressing mode. On entry to the SYNAD routine, register 1 contains error flags in
byte 0 followed by the DCB address in bytes 1-3. For 31-bit callers, the caller must
save the error flags, if needed, and then clear the high order byte of register 1
before using it to access fields within the DCB in the SYNAD routine.

290 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GETPOOL

GETBUF—Obtain a Buffer (BDAM, BISAM, BPAM, and BSAM)
The GETBUF macro causes the control program to obtain a buffer from the buffer
pool assigned to the specified data control block and to return the address of the
buffer in a designated register. The BUFCB field of the data control block must
contain the address of the buffer pool control block when the GETBUF macro is
issued. The system returns control to the instruction following the GETBUF macro.
Use the FREEBUF macro to return the buffer obtained to the buffer pool. GETBUF
does not support buffers above the line.

The GETBUF macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the GETBUF macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block containing the buffer pool control
block address. When issued in 31-bit addressing mode, the input DCB address
must be a clean 31-bit address.

register—(2-12)
specifies one of the registers 2 through 12 in which the system places the
address of the buffer obtained from the buffer pool. If no buffer is available, the
contents of the designated register are set to 0.

[label] GETBUF dcb address
,register

GETPOOL—Build a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM)

The GETPOOL macro builds a buffer pool in a storage area acquired by the
system. The system places the address of the buffer pool control block in the
BUFCB field of the data control block. If you choose to issue the GETPOOL macro
for QSAM and QISAM, then issue it either before an OPEN macro is issued or
during the OPEN data control block exit routine for the specified data control block.
Otherwise, the system will build an appropriate buffer pool for you. Do not issue the
GETPOOL macro if you wish QSAM buffers to be above the 16MB line.

If you choose to issue the GETPOOL macro for BDAM, BISAM, BPAM, or BSAM,
then issue it before you issue the GETBUF macro. Remember that if the BUFNO
parameter is supplied in the data control block before completion of the OPEN DCB
exit routine, then OPEN will build a buffer pool and your program should not issue
GETPOOL. You may choose to supply BUFNO when the data set is allocated to
the program (on the DD statement) and not clear BUFNO in the DCB before
completion of the OPEN DCB exit routine.

The GETPOOL macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the GETPOOL macro is:

 Chapter 7. Non-VSAM Macro Descriptions 291

 IEWLCNVT

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block to which the buffer pool is
assigned. Only one buffer pool can be assigned to a data control block.

The value you specify can be either a positive or a negative value. If this
parameter has the high-order bit on (for example, to signify the last address in
a list), this bit must be reset to zero. Otherwise, the address will be treated as a
negative value. When issued in 31-bit addressing mode, the input DCB address
must be a clean 31-bit address. The resulting buffer pool always resides below
the 16MB line.

number-of-buffers—symbol, decimal digit, absexp, or (2-12)
specifies the number of buffers in the buffer pool to a maximum of 255.

buffer length—symbol, decimal digit, absexp, or (2-12)
specifies the length, in bytes, or each buffer in the buffer pool. The value
specified for the buffer length must be a doubleword multiple; otherwise, the
system rounds the value specified to the next higher doubleword multiple. The
maximum length that can be specified is 32760 bytes. For QSAM, the buffer
length must be at least as large as the value specified in the block size
(DCBBLKSI) field in the data control block.

(0) The number of buffers and buffer length can be specified in general register 0.
If (0) is coded, register 0 must contain the binary values for the number of
buffers and buffer length as shown in the following illustration:

[label] GETPOOL dcb address
,{number of buffers,buffer length|(0)}

 Register ð
 ┌─────────────────────────────┬─────────────────────────────┐

│ Number of Buffers │ Buffer Length │
 ├─────────────────────────────┼─────────────────────────────┤

│ │ │
Bits: │ð 15│16 31│

Your program releases the buffer pool and the associated storage area by issuing a
FREEPOOL macro after issuing a CLOSE macro for the data set indicated in the
specified data control block.

| IEWLCNVT—Convert Directory Entries (BPAM)
| If your program is accessing both BLDL and DESERV type directory entries, you
| can use the IEWLCNVT macro to convert one type into the other to provide a
| single format for processing.

| The IEWLCNVT macro provides two functions for directory entry conversion:

| � Converting a PDS Directory Entry (PDSDE) to a Program Management
| Attribute Record (PMAR)

| � Converting a PMAR to a PDSDE

292 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 IEWLCNVT

| Convert a PDSDE to a PMAR
| You may use this conversion when converting a directory entry which was obtained
| from BLDL into PMAR format. When using this macro, you must supply the address
| of the indicator byte (PDS2INDC) of the PDSDE and an output area of sufficient
| size for the PMAR to be generated. The length of the PMAR is returned in a full
| word field supplied by the caller. If the PDSDE is for an alias entry (i.e. the
| PDS2ALIS bit is on), you must provide an 8-byte area in which the primary name
| will be returned.

| Note: Sufficient size for the PMAR is the length of the PMAR basic section plus
| the length of the PMARR section.

| It is impossible to verify with complete certainty that the input PDSDE is a directory
| entry for a load module. However, the results of converting a non-load module
| directory entry into PMAR format would be completely unintelligible. Therefore,
| IEWLCNVT performs certain minimal checks to ensure that the PDSDE
| approximates the format of a load module directory entry before processing the
| conversion. If any of these tests fail, the conversion will not be performed and error
| return and reason codes will be issued.

| Convert a PMAR to a PDSDE
| You may use this conversion when converting a directory entry which was obtained
| from DESERV FUNC=GET, or DESERV FUNC=GET_ALL, into PDSDE format.
| When invoking this function, the caller supplies the PMAR to be converted and an
| output area of at least 63 bytes in which the PDSDE will be returned. The input
| PMAR must include either the PMARR or PMARL extension. You must also specify
| the FLAGS= parameter that is used to define a byte which indicates processing
| flags.

| The processing flags byte is mapped by the LCNV_FLAGS_DSECT of the
| IEWLCNV macro. The only processing option defined currently is a bit which
| indicates whether the input PMAR is for an alias name or not. The PDSDE
| generated will consist of the indicator byte (PDS2INDC) and the user data field.
| The fields in the IHAPDS mapping that precede PDS2INDC will not be generated.
| The length of the PDSDE (which is the length of PDS2INDC, 1 byte, plus the length
| of the user data) may be returned in a full word field supplied by the caller.

| To convert a PMAR for a primary name to a PDSDE, the PMARA parameter should
| not be specified and the flags parameter should pass a byte of X'00'.

| To convert a PMAR for an alias name to a PDSDE, where the PMAR was obtained
| from DESERV GET or GET=ALL, the PMAR already reflects the attributes for the
| alias. Therefore, the PMARA parameter should not be specified and the FLAGS
| parameter should set the LCNV_FLAGS_ALIAS bit to 1.

| If this macro is used in the DESERV EXIT routine in response to a DESERV PUT,
| the input to the exit routine is a single PMAR (for the primary name) and optionally
| a list of PMARAs (one for each alias name defined). To use this conversion
| function in this environment to generate a PDSDE for an alias, you must do the
| following:

| � Pass the PMAR for the primary name via the PMAR parameter

| � Pass the PMARA for the alias via the PMARA parameter

 Chapter 7. Non-VSAM Macro Descriptions 293

 IEWLCNVT

| � Set the LCNV_FLAGS_ALIAS bit and pass this byte via the FLAGS parameter.

| To convert PMAR to PDSDE, the format of the IEWLCNVT macro is:

| To convert PDSDE to PMAR, the format of the IEWLCNVT macro is:

| ,AMODEREG=register
| identifies a register that the macro will use to save and restore the addressing
| mode of the caller. If the caller is always in 31-bit addressing mode (at the time
| IEWLCNVT is invoked) you can omit this parameter. If the caller is in 24-bit
| addressing mode at the time IEWLCNVT is to be issued, you must specify the
| AMODEREG parameter. Valid registers are 2-12. The register may be enclosed
| in parentheses, but this is not required.

| FUNC=function_name
| identifies the function to be performed. The FUNC parameter is not required for
| MF=L unless other parameters are specified. Valid function_name values are:

| PMAR_TO_PDSDE
| convert a PMAR to a PDS2 style directory entry.

| PDSDE_TO_PMAR
| convert the user data of a PDS2 style directory entry (PDSDE) for a load
| module to a PMAR.

| FLAGS=processing_flags
| specifies options to be used while processing the PMAR_TO_PDSDE function.
| Variable processing_flags is a byte of flags. The only defined flag indicates if
| an alias entry is being processed. Processing flags desct is mapped by
| LCNV_FLAGS_DSECT in the IEWLCNV macro.

| [label]| IEWLCNVT| FUNC=PMAR_TO_PDSDE
| ,FLAGS=processing_flags
| ,PMAR=pmar_storage
| ,PDS2INDC=pdsde_indicator_byte
| [,AMODEREG= register]
| [,PMARA= pmara_storage]
| [,PNAME=primary_name]
| [,MF={S|
| L|
| (E,{(1-12)|label}[,COMPLETE|NOCHECK])}]
| ,OUTLEN=output_length
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]

| [label]| IEWLCNVT| FUNC=PDSDE_TO_PMAR
| ,PMAR=pmar_storage
| ,PDS2INDC=pdsde_indicator_byte
| [,PNAME=primary _name]
| [,AMODEREG= register]
| [,MF={S|
| L|
| (E,{(1-12)|label}[,COMPLETE|NOCHECK])}]
| [,RETCODE=retcode]
| [,RSNCODE=rsncode]

294 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 IEWLCNVT

| [,MF={S|L|(E, {(1-12)|label}[,COMPLETE|NOCHECK])}]
| first argument — keyword S, L, E or default to S when MF is omitted.

| Second argument, if MF=E — registers 1-12 or RX-type address.

| Third argument, if MF=E — keyword COMPLETE or NOCHECK or default to
| COMPLETE, if omitted.

| The MF (Macro Format) keyword specifies how the macro should generate its
| code. Invalid keyword checking, based on function specified, is done for all
| macro formats.

| The Standard format (S) will check all required keywords and invalid keywords.
| This form generates a complete in-line expansion of the parameter list. Control
| is then transferred to the convert routine. The standard form is for programs
| that are not reenterable.

| L specifies the List form of the macro. This form generates a remote parameter
| list. Registers are invalid arguments for MF=L format since executable code
| generation does not occur, only adcons are generated. Invalid keyword
| checking is done. E specifies the Execute form of the macro. This form updates
| the remote parameter list (MF=L) and transfers control to the convert routine. A
| second parameter is required and a third parameter is optional.

| The second parameter for MF=E format is the address of the parameter list
| created by the MF=L IEWLCNVT invocation. This parameter must be specified
| as either a RX type of address (possibly the label from MF=L macro invocation)
| or a register enclosed in parentheses.

| The third parameter, COMPLETE or NOCHECK, is optional. Default is
| COMPLETE. This argument specifies whether required keyword checking will
| be done.

| If NOCHECK is coded, then none, some, or all allowable keywords may be
| specified. It is assumed that any missing keywords are coded on the MF=L
| macro invocation. If some keywords are coded, the FUNC keyword is also
| required to enable keyword validation.

| If COMPLETE is coded or allowed to default, the plist will be zeroed out
| (except for the plist header). All required keywords must be specified.

| OUTLEN=output_length
| specifies a fullword (4-byte) field to contain the length of the generated
| directory data. Variable output_length is an output parameter on the
| PMAR_TO_PDSDE and PDSDE_TO_PMAR functions. OUTLEN must not be
| specified on MF=L.

| PDS2INDC=pdsde_indicator_byte—RX-type address or (2-12) (standard form)
| specifies the indicator byte preceding the user data field of a PDS directory
| entry. Variable indicator_byte is an input parameter on the PDSDE_TO_PMAR
| function and an output parameter on the PMAR_TO_PDSDE function.

| PMAR=pmar_storage—RX-type address or (2-12) (standard form)
| specifies an area mapped by the PMAR structure of macro IEWPMAR. Variable
| primary_process_sar_data is the PMAR structure used for input on the
| PMAR_TO_PDSDE function and output on the PDSDE_TO_PMAR function.

 Chapter 7. Non-VSAM Macro Descriptions 295

 IEWLCNVT

| PMARA=pmara_storage—RX-type address or (2-12) (standard form)
| specifies an area mapped by the PMARA structure of macro IEWPMAR.
| Variable alias_process_sar_data is the PMARA structure used as input by the
| PMAR_TO_PDSDE function.

| PNAME=primary_name—RX-type address or (2-12) (standard form)
| specifies the area for an eight byte primary name. This is an input field on the
| PMAR_TO_PDSDE function and must be passed if the processing flags
| indicate that an alias is being processed.

| RETCODE=retcode—RX-type address or (2-12) or (15)
| specifies the name of the variable where the macro is to store the return code
| associated with the result of the function invocation. Variable return_code is a
| fullword value but is optional. If RETCODE is not specified, the return code is in
| register 15. The RETCODE parameter can not be specified on an MF=L
| invocation.

| RSNCODE=rsncode—RX-type address or (2-12) or (0)
| specifies the name of the variable where the macro is to store the reason code
| associated with the result of the function invocation. Variable reason_code is a
| fullword value but is optional. If RSNCODE is not specified, the return code is
| in register 0. The RSNCODE parameter can not be specified on an MF=L
| invocation.

| IEWLCNVT Reason Codes
| IEWLCNVT reason codes have the following format:

| Offset| Length| Meaning

| 00 (X'00')| 1 byte| SMS component code — (X'26') indicates loader (of which IEWLCNVT
| is a part).

| 01 (X'01')| 1 byte| Module ID— used for problem diagnosis.

| 02 (X'02')| 2 bytes| Reason code that identifies the error. A program testing the IEWLCNVT
| reason code should only look at this last two bytes. The component id
| and module id should not be tested. They are reported for diagnostic
| purposes only.

| The following are the two low order byte values for the reason codes which
| IEWLCNVT may return (sorted by return code).

| Return Code| Reason Code| Meaning

| 00 (X'00')| | Successful.

| | 00 (X'00')| Successful (actually 4 bytes of zeros are set).

| 16 (X'10')| | Caller error.

| | 50 (X'32')| The level field of the PMAR specified an unsupported level. This is set for
| PMAR_TO_PDSDE function.

296 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ISITMGD

| Return Code| Reason Code| Meaning

| | 24 (X'18')| The input PDSDE does not appear to be that of a load module. This is
| set for the PDSDE_TO_PMAR function. The problem is one of the
| following:

| � The PDS2INDC byte indicated a length less than the minimum for a
| load module‘s directory entry user data field. This minimum length is
| 22 bytes.

| Note: PDS2INDC records the user data length in number of
| half-words in bits 3 through 7. The minimum number of
| half-words is 11.

| � Too many or too few note list TTRs indicated in PDS2INDC. A load
| module will only have either 1 or 2 note list TTRs. PDS2INDC
| records the number of note list TTRs in bits 1 and 2.

| | 26 (X'1A')| The input PDSDE is for a program object. Complete conversion will not
| be performed.

ISITMGD—Is the Data Set System-Managed? (BPAM, BSAM, QSAM)
The ISITMGD macro allows you to determine certain attributes about the data set
being processed. The ISITMGD macro sets some bits in the ISITMGD parameter
list which you can test to get information about the data set. You test bits in the
parameter list to determine if a data set:

 � Is SMS-managed

� Is a partitioned data set extended (PDSE)

� Is an extended format data set

� Is a compressed format data set

| � Is an HFS file

� Contains data members

� Contains executable programs

� Is an unknown data type.

The IGWCISM macro maps the ISITMGD parameter list:

ISMMGD ON if the data set is system-managed.

ISMPDSE ON if the data set is a PDSE

ISMDSTRP ON if the data set is extended format

ISMDCOMP ON if the data set is a compressed format data set. Note that
ISMDSTRP will also be on in this case.

ISMOMVS ON if processing an HFS file

ISMDTREC ON if the data set is a PDSE record format library containing data
members (set only if DATATYPE=YES is specified)

ISMDTPGM ON if the data set is a PDSE program object library (set only if
DATATYPE=YES is specified)

ISMDUNK ON if the data set is an unknown data type (the data type could not
be determined) (set only if DATATYPE=YES is specified)

 Chapter 7. Non-VSAM Macro Descriptions 297

 ISITMGD

You need to supply either the address of the opened DCB or the address of a valid
DEB. See “ISITMGD Completion Codes” on page 300 for the ISITMGD return
codes, and DFSMS/MVS Using Data Sets for an example of coding the ISITMGD
macro.

The ISITMGD macro can be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

R13 must contain the address of an 18 word save area.

The format of the ISITMGD macro is:

DEB=addr
specifies the address of a valid data extent block.

addr—RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of the DEB.

DCB=addr
specifies the address of a DCB opened to a data set.

addr—RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of the opened DCB.

CONCAT={0|number}
specifies the concatenation number of the PDSE or partitioned data set. This
is supported for BPAM and ignored for BSAM and QSAM. For a sequential
concatenation ISITMGD always tests the current data set.

0 Indicates the only data set or the first data set in the concatenation.

number
Indicates which data set in the concatenation.

ALL
Indicates the status of all of the data sets in the concatenation. If specified
for a sequential concatenation (DSORG=PS), information is returned for
only the data set currently positioned to. If specified for a partitioned
concatenation (DSORG=PO), information is returned for all the data sets in
the concatenation. ISMDSALL in ISMOFLG2 is on if all data sets in the
concatenation are of the same type (all partitioned data sets, all PDSEs, all
SMS, or all non-SMS).

An application which may run on a release of DFP prior to DFSMS/MVS
1.1.0 and makes use of CONCAT=ALL must determine if CONCAT=ALL
was recognized by the ISITMGD execution module at run time. If
CONCAT=ALL is recognized, at least two of the data set organization bits
of the ISMOFLG2 byte will be set on. If CONCAT=ALL is not recognized,
then information returned will be for the first data set in the concatenation
(equivalent to CONCAT=0).

[label] ISITMGD {DEB=addr|DCB=addr}
[,CONCAT={0 |number|ALL}]
[,DATATYPE={YES |NO}]
[,MF=S]

298 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 ISITMGD

DATATYPE={YES|NO }
specifies information on the data type.

YES
Returns information on the data type of the specified data set. ISITMGD
can only determine data type information for PDSEs with existing members.

An application which may run on a release of DFP prior to DFSMS 1.1.0
and makes use of DATATYPE=YES must determine if DATATYPE=YES
was recognized by the ISITMGD execution module at run time. If
DATATYPE=YES is recognized, at least one of the data type bits in
ISMOFLG3 will be set on. If DATATYPE=YES is not recognized, all of the
data type bits in ISMOFLG3 will be set off.

The data type information returned, in byte IGMOFLG3, will indicate one or
more of the following:

� ISMDTPGM—data type is PDSE program object library.

� ISMDTREC—data type is PDSE record format members (data
members).

� ISMDTUNK—data type is unknown. An indication of unknown may
indicate the data set is either a sequential data set, a partitioned data
set, or a PDSE with no existing members. A PDSE with no members
would have an unknown data type, ISMDTUNK=ON, but would have a
data set organization of PDSE, ISMPDSE=ON.

� ISMDSTRP in ISMOFLG2—data set is striped.

NO
Data type is not determined.

If DATATYPE=NO is specified, or defaulted, no attempt will be made to
determine the data type. DATATYPE=NO should be specified explicitly or
by default unless the application requires the data type organization, since
there is significant additional overhead required to obtain the data type
information.

MF=S
specifies the standard form of ISITMGD.

 ISITMGD—List Form
The list form of the ISITMGD macro is used to construct a parameter list for the
ISITMGD function. The IGWCISM macro maps the ISITMGD parameter list.

The list form of the ISITMGD macro is shown below. The description of the
standard form of the ISITMGD macro explains the function of each parameter.

DEB=addr

[label] ISITMGD {DEB=addr|DCB=addr}
[,CONCAT={0 |number|ALL}]
[,DATATYPE={YES |NO}]
,MF=L

 Chapter 7. Non-VSAM Macro Descriptions 299

 ISITMGD

DCB=addr

CONCAT={0|number}

DATATYPE={YES|NO }

MF=L
specifies the list form of ISITMGD. This generates a parameter list that contains
no executable instructions. This parameter list is mapped by the IGWCISM
macro. The list can be used as input to and be modified by the execute form.

 ISITMGD—Execute Form
A remote parameter list is used in, and can be modified by, the execute form of the
ISITMGD macro.

Note: If either the DATATYPE keyword (DATATYPE=YES or DATATYPE=NO) or
CONCAT=ALL is specified, the application program is responsible for
initialization of the parameter list. This can be done simply by invoking the
ISITMGD MF(L) format, which will result in an initialized static parameter
list. If dynamic storage is obtained for the parameter list, it must be
initialized by copying a static parameter list.

The execute form of the ISITMGD macro is shown below. The description of the
standard form of the ISITMGD macro explains the function of each parameter.

DEB=addr

DCB=addr

CONCAT={0|number}

DATATYPE={YES|NO }

MF=(E,list_address)
specifies the execute form of ISITMGD, and an existing parameter list is used.

list_address—RX-Type address, A-Type address, or (2-12)
specifies the address of the parameter list.

[label] ISITMGD {DEB=addr|DCB=addr}
[,CONCAT={0 |number|ALL}]
[,DATATYPE={YES |NO}]
,MF=(E,list_address)

ISITMGD Completion Codes
When the system returns control to your problem program, the low-order byte of
register 15 contains a return code. The low-order byte of register 0 contains a
reason code.

The ISITMGD return and reason codes are as follows:

300 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 MSGDISP

Return Code (15) Reason Code (0) Meaning

00 (X'00') Successful completion.

04 (X'04') 04 (X'04') Data control block was not open.

04 (X'04') 08 (X'08') Data extent block was not valid.

04 (X'04') 16 (X'10') An access method control block (ACB), not a DCB, was
supplied.

04 (X'04') 20 (X'14') DEB extension does not exist.

04 (X'04') 28 (X'1C') Access method type is not supported.

04 (X'04') 32 (X'20') Invalid unit control block (UCB).

04 (X'04') 36 (X'24') Invalid SMS control block.

04 (X'04') 40 (X'28') Invalid SMS control block. This could be caused by a bad DCB,
a DEB error, or an internal SMS error.

04 (X'04') 48 (X'30') Invalid INOUT DCB or DEB address. The input DCB and DEB
control blocks did not point to each other.

04 (X'04') 52 (X'34') DEBCHK error.

08 (X'08') 00 (X'00') ISITMGD macro is not supported on current level of system.
Must be MVS/DFP 3.2 or later.

12 (X'0C') 00 (X'00') Reserve bits in the parameter list are set on, possibly function
requested which is not supported on this level of ISITMGD.

12 (X'0C') 04 (X'04') Invalid parameter list pointer.

12 (X'0C') 08 (X'08') Invalid parameter list level.

12 (X'0C') 12 (X'0C') Invalid parameter list length.

12 (X'0C') 16 (X'10') Invalid concatenation number.

12 (X'0C') 20 (X'14') Invalid concatenation number.

12 (X'0C') 24 (X'18') DCB or DEB pointer is zero.

12 (X'0C') 28 (X'1C') The bits indicating the DCB and DEB are either both on or off.
Either both the DCB and DEB were supplied or neither.

16 (X'10') 04 (X'04') Data type not set due to SMS error, dump taken.

16 (X'10') 08 (X'08') Data type not set due to SMS error, no dump taken.

MSGDISP—Displaying a Ready Message (BSAM, QSAM)
The MSGDISP macro is used to load the message display on magnetic tape drives
that use cartridges, such as the 3480. Functions for the display include:

� Displaying a ready message

� Mount volume 5

� Demount volume 5

� Reset display 5

� Verify volume 5

� Generalized display. 5

 Chapter 7. Non-VSAM Macro Descriptions 301

 MSGDISP

The MSGDISP macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the MSGDISP macro is:

RDY
specifies that text supplied in the TXT parameter is displayed in positions 2
through 7 of the display while the data set is open. The display is steady (not
flashing) and is enclosed in parentheses. The display is also written to the tape
pool console (routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted volume.
If multiple devices are allocated, the message display is directed to the one
containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you can update a
message display after an end-of-volume condition by using the EOV
exit specified in a DCB exit list. For a concatenated data set with unlike
characteristics, you can also use the DCB open exit to update the
display.

addr—RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of the opened DCB.

TXT={'msgtxt'|addr}
specifies as many as 6 characters to be displayed in positions 2 through 7. If
TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in
apostrophes.

addr—RX-Type address, A-Type address, or (2-12)
specifies an in-storage address of an area containing the six bytes of text
to be displayed.

[label] MSGDISP RDY
,DCB=addr
[,TXT={' msgtxt'|addr}]

 MSGDISP—List Form
The list form of the MSGDISP macro is:

RDY
specifies that text supplied in the TXT parameter is displayed in positions 2
through 7 while a data set is open. The display is steady (not flashing) and is

[label] MSGDISP [RDY]
[,DCB=addr]
,MF=L
[,TXT={' msgtxt'|addr}]

5 These MSGDISP macro functions are explained in DFSMS/MVS DFSMSdfp Advanced Services .

302 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 MSGDISP

enclosed in parentheses. The display is also written to the tape pool console
(routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted volume.
If multiple devices are allocated, the message display is directed to the one
containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you can update a
message display after an end-of-volume condition by using the EOV
exit specified in a DCB exit list. For a concatenated data set with unlike
characteristics, you can also use the DCB open exit to update the
display.

addr—A-Type address
specifies an in-storage address of the opened DCB.

MF=L
specifies the list form of MSGDISP. This generates a parameter list that
contains no executable instructions. The list can be used as input to and can
be modified by the execute form.

TXT={'msgtxt'|addr}
specifies as many as 6 characters to be displayed in positions 2 through 7. If
TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in
apostrophes.

addr—A-Type address
specifies an in-storage address of an area containing the text to be
displayed.

 MSGDISP—Execute Form
The execute form of the MSGDISP macro is:

RDY
specifies that text supplied in the TXT parameter is displayed in positions 2
through 7 while a data set is open. The display is steady (not flashing) and is
enclosed in parentheses. The display is also written to the tape pool console
(routing code 3, descriptor code 7).

DCB=addr
specifies the address of a DCB opened to a data set on the mounted volume.
If multiple devices are allocated, the message display is directed to the one
containing the volume currently in use.

Note: If multiple devices or multiple volumes are allocated, you can update a
message display after an end-of-volume condition by using the EOV
exit specified in a DCB exit list. For a concatenated data set with unlike

[label] MSGDISP RDY
[,DCB=addr]
,MF=(E,addr)
[,TXT={' msgtxt'|addr}]

 Chapter 7. Non-VSAM Macro Descriptions 303

 MSGDISP

characteristics, you can also use the DCB open exit to update the
display.

addr—RX-Type address or (2-12)
specifies an in-storage address of the opened DCB.

MF=(E,addr)
specifies that the execute form of MSGDISP and an existing parameter list is to
be used.

addr—RX-Type address, (1), or (2-12)
specifies an in-storage address of the parameter list.

TXT={'msgtxt'|addr}
specifies as many as 6 characters to be displayed in positions 2 through 7. If
TXT is not specified, blanks are displayed.

'msgtxt'
specifies the 1- to 6-character text. The text must be enclosed in
apostrophes.

addr—RX-Type address or (2-12)
specifies an in-storage address of an area containing the six bytes of text
to be displayed.

MSGDISP Completion Codes
When the system returns control to your problem program, the low-order byte of
register 15 contains a return code. For return code = 08, the low-order byte of
register 0 contains a reason code.

The MSGDISP return and reason codes are:

Return Code (15) Reason Code (0) Meaning

00 (X'00') Successful completion.

04 (X'04') Device does not support MSGDISP.

08 (X'08') 01 (X'01') Invalid parameter.

08 (X'08') 02 (X'02') Invalid DCB or DEB error.

08 (X'08') 03 (X'03') Environmental error.

08 (X'08') 04 (X'04') Authorization violation.

08 (X'08') 05 (X'05') Invalid UCB.

08 (X'08') 06 (X'06') Invalid request.

08 (X'08') 11 (X'0B') Unsuccessful ESTAE macro call.

08 (X'08') 12 (X'0C') Insufficient virtual storage available.

12 (X'0C') I/O error.

Note: An I/O error occurs for load display if the drive display
has a hardware failure.

304 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 NOTE

NOTE—Provide Relative Position (BPAM and BSAM—Tape and DASD
Only)

The NOTE macro returns the position of the last (or next if TYPE=ABS is specified)
block read from or written into a data set. All input and output operations using the
same data control block must be tested for completion before the NOTE macro is
issued.

The NOTE macro with the REL parameter, which is the default, works with any
magnetic tape drive. However, NOTE with the ABS parameter works only on
cartridge tapes, such as the 3480.

The capability of using the NOTE macro is automatically provided when a PDSE or
partitioned data set is used (DSORG=PO). But you must specify MACRF=P in the
DCB macro to use NOTE or POINT when using BSAM for a sequential data set or
a member of a partitioned data set or PDSE.

The NOTE macro can be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

The NOTE (and POINT) macros cannot be used with spooled data sets.

Subsystem data sets : The NOTE macro can be used for subsystem data sets if
the subsystem supports it. If the subsystem does not support it, the results are
unpredictable.

HFS files : The NOTE macro can be issued for HFS files, except for FIFO or
character special files or when PATHOPTS=OAPPEND.

NOTE does not support an HFS file that contains more than 16 mega-records
minus two. A NOTE after 16 mega-records minus two (16,777,214) returns an
invalid value (X'FFFFFF').

The format of the NOTE macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the partitioned or
sequential data set being processed. For TYPE=REL requests, when issued in
31-bit addressing mode, the input DCB address must be a clean 31-bit
address.

TYPE={ABS|REL }
indicates if the device that the data set resides on supports the physical block
identifier (ABS) or relative addresses (REL).

ABS
specifies that, after NOTE executes successfully (contents of register 15 is
0), register 0 contains the physical block identifier for the next data block
that will be transferred between virtual storage and the control unit buffer,
and register 1 contains the physical block identifier of the next data block
that will be transferred between the control unit buffer and the tape drive.

[label] NOTE dcb address
[,TYPE={ABS|REL }]

 Chapter 7. Non-VSAM Macro Descriptions 305

 NOTE

If you subtract the low-order 20 bits of register 1 from the low-order 20 bits
of register 0, the remainder is the number of data blocks left in the control
unit buffer. A negative remainder means the buffer is in read mode, and a
positive remainder means the buffer is in either write or read-backward
mode. A zero remainder means that no data is buffered.

REL
causes the system to return the relative position of the last block read from
or written into a data set. This means that if the data set later is copied and
the number of blocks on each volume is changed or the data set is
reblocked, then the value returned by NOTE for a particular block may
differ. The position of the current volume is returned in register 1 as
follows:

Magnetic Tape

The block number is in binary, right-adjusted in register 1 with high-order
bits set to zero. Do not use a NOTE macro for tapes without standard
labels when:

� The data set is opened for RDBACK (specified in the OPEN macro), or

� The DISP parameter of the DD statement for the data set specifies
DISP=MOD and the OPEN option was OUTPUT or OUTIN, or

� The OPEN option was EXTEND or OUTINX.

Direct Access Storage Devices

TTRz format, where:

TTR specifies a 3-byte field indicating the relative track address of the
block.

Note: For a PDSE, an extended format data set, or an HFS file,
the TTR is a token that does not represent the physical
location of the data set or member.

z specifies a byte set to zero.

If the data set later is copied to a DASD that has a different track length, the value
returned by NOTE for a particular block may differ.

Notes:

1. When direct access storage devices are being used, the amount of remaining
space on the track is returned in register 0 if a NOTE macro follows a WRITE
macro. If a NOTE macro follows a READ or POINT macro, the track capacity of
the direct access storage device is returned in register 0. For PDSEs, extended
format data sets, and HFS files, the NOTE macro does not calculate the
amount of space remaining on the track or the track capacity, and returns a
value of X'7FFF'.

2. IBM recommends that your programs not become device-dependent. Your
program is device-dependent if it examines what NOTE returns in register 1 or
performs arithmetic on it. Your program can pass the four bytes to the POINT
macro without examining them.

3. An example of an unmovable data set is one that has all of these attributes:

306 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 OPEN

� The system determined the block size because it was omitted. IBM
recommends omitting it. See the BLKSIZE parameter description for
“DCB—Construct a Data Control Block (BSAM)” on page 212.

� The data set resides on DASD. A program such as DFSMShsm may copy
the data set to a different type of DASD or to tape. This may cause the
system to determine a different block size that is optimized for the new
device type.

� A program has stored the results of a NOTE macro inside the data set or in
some other data set. This value typically depends on the block size.

NOTE Completion Codes
When the system returns control to your problem program and you have specified
the ABS parameter, the low-order byte of register 15 contains a return code. If
return code = 08, the low-order byte of register 0 contains a reason code:

The NOTE return and reason codes are:

If Type=ABS is Specified

Return Code (15) Reason Code (0) Meaning

00 (X'00') Successful completion.

04 (X'04') Device does not support block identifier.

08 (X'08') 01 (X'01') Incorrect parameter.

08 (X'08') 02 (X'02') Incorrect DCB or a DEB error.

08 (X'08') 03 (X'03') Environmental error.

08 (X'08') 11 (X'0B') Unsuccessful call to ESTAE macro.

08 (X'08') 12 (X'0C') Insufficient virtual storage available.

12 (X'0C') Input/output error.

If Type=REL is Specified
None.

OPEN—Connect Program and Data (BDAM, BISAM, BPAM, BSAM,
QISAM, and QSAM)

The OPEN macro completes the specified data control blocks and prepares for
processing the data sets identified in the data control blocks. Input labels are
analyzed and output labels are created. Control is given to exit routines as
specified in the data control block exit list. The processing method (option 1)
provides volume positioning for the data set and define the processing mode
(INPUT, OUTPUT, and so forth) for the data sets. Final volume positioning (when
volume switching occurs) can be specified (option 2) to override the positioning
implied by the DD statement DISP parameter. Option 2 applies only to volumes in a
multivolume tape data set other than the last volume. Any number of data control
block addresses and associated options can be specified in the OPEN macro.

All DCBs must reside below the 16MB line.

 Chapter 7. Non-VSAM Macro Descriptions 307

 OPEN

| The OPEN macro does not support more than a total of 255 spooled, SUBSYS or
| compressed format data sets for one invocation.

The DCB access methods do not support the “nocapture UCB” option of dynamic
allocation.

If associated data sets for a 3525 card punch are being opened, all associated data
sets must be open before an I/O operation is initiated for any of the data sets. For
a description of associated data sets, see Programming Support for the IBM 3505
Card Reader and the IBM 3525 Card Punch

HFS data sets

Open and end-of-volume processing do not support HFS data sets. If an application
attempts to open a DCB for an HFS data set, the system issues an information
message and the current task abends. If an application encounters an
end-of-volume condition which causes positioning to an HFS data set, the system
issues an information message and the job step abends.

Note:

HFS files:

The OPEN macro supports HFS files. It allows PATH= to be specified for a
DCB with DSORG=PS and a BSAM or QSAM MACRF. See DFSMS/MVS
Using Data Sets for more information on this type of access.

The standard form of the OPEN macro is as follows (the list and execute forms are
shown following the description of the standard form):

dcb address—A-Type Address or (2-12)
specifies the address of the data control blocks for the data sets to be prepared
for processing.

Note: If the register format is specified, then the register must be enclosed
within parentheses. For example, OPEN ((2),INPUT).

options
The option values shown in the following table indicate the volume positioning
available based on the device type and access method being used.

[label] OPEN (dcb address[, [(options)][,...]])
[,TYPE=J]
[,MODE=24|31]

308 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 OPEN

Access
Method

Device Type

Magnetic
Tape

Direct
Access

Other
Types

 Option 1 Option 2 Option 1 Option 2 Option 1 Option 2

QSAM [INPUT]
[EXTEND]
[OUTPUT]
[RDBACK]

[,REREAD]
[,LEAVE]
[,DISP]

[INPUT]
[EXTEND]
[OUTPUT]
[UPDAT]

[,REREAD]
[,LEAVE]
[,DISP]

[INPUT]
[EXTEND]
[OUTPUT]

—

BSAM [INPUT]
[EXTEND]
[OUTINX]
[OUTPUT]
[INOUT]
[OUTIN]
[RDBACK]

[,REREAD]
[,LEAVE]
[,DISP]

[INPUT]
[EXTEND]
[OUTINX]
[OUTPUT]
[INOUT]
[OUTIN]
[UPDAT]

[,REREAD]
[,LEAVE]
[,DISP]

[INPUT]
[OUTPUT]

—

QISAM Load
Mode

— — [OUTPUT]
[EXTEND]

— — —

BPAM, BDAM — — [INPUT]
[OUTPUT]
[UPDAT]

— — —

If option 1 is omitted, INPUT is assumed. If option 2 is omitted, DISP is
assumed. You must code option 1 if also coding option 2. Option 2 has an
effect only for multivolume tape data sets. Options 1 and 2 are ignored for
BISAM and QISAM (in the scan mode), and the data control block indicates the
operation. You must specify OUTPUT, OUTIN, OUTINX (DASD), or EXTEND
(on DASD) when creating a data set.

| Note: The EXTEND, INOUT, OUTIN, and OUTINX options are not allowed for
| ISO/ANSI Version 3 tape processing. This restriction does not apply to
| ISO/ANSI Version 4 IBM formatted tapes.

Note: The UPDAT option is not allowed for compressed format data sets.

The following describes the options shown in the preceding illustration. All option
parameters are coded as shown.

Option 1 Meaning

EXTEND The data set is treated as an OUTPUT data set, except that
records are added to the end of the data set regardless of what
was specified on the DISP parameter of the DD statement.

INPUT Input data set.

INOUT The data set is first used for input and, without reopening, is used
as an output data set. The data set is processed as INPUT if it is a
SYSIN data set, or a PDSE, or LABEL=(,,,IN) is specified in the DD
statement.

OUTPUT Output data set (for BDAM, OUTPUT is equivalent to UPDAT).

OUTIN The data set is first used for output and, without reopening, is used
as an input data set. The data set is processed as OUTPUT if it is
a SYSOUT data set, or a PDSE, or LABEL=(,,,OUT) is specified in
the DD statement.

 Chapter 7. Non-VSAM Macro Descriptions 309

 OPEN

OUTINX The data set is treated as an OUTIN data set, except that records
are added to the end of the data set regardless of what was
specified on the DISP parameter of the DD statement. For PDSEs,
OUTINX is equivalent to OUTPUT.

RDBACK Input data set, positioned to read backward.

Note: Variable-length records cannot be read backward. The
RDBACK option is not allowed for DASD data sets.

UPDAT Data set to be updated in place or, for BDAM, blocks are to be
updated or added. If you specify UPDAT using QSAM, you must
use locate mode.

Note: The UPDAT option is not allowed for compressed format
data sets or HFS files or for magnetic tapes.

Option 2 Meaning

LEAVE Positions the current tape volume to the logical end of the data set
when volume switching occurs. If processing was forward, the
volume is positioned to the end of the data set. If processing was
backward (RDBACK), the volume is positioned to the beginning of
the data set.

REREAD Positions the current tape volume to reprocess the data set when
volume switching occurs. If processing was forward, the volume is
positioned to the beginning of the data set. If processing was
backward (RDBACK), the volume is positioned to the end of the
data set.

DISP Specifies that a tape volume is disposed of in the manner implied
by the DD statement associated with the data set. Direct access
volume positioning and disposition are not affected by this
parameter of the OPEN macro. There are several dispositions that
you can specify in the DISP parameter of the DD statement. DISP
can be PASS, DELETE, KEEP, CATLG, or UNCATLG. This option
has significance at the time an end-of-volume condition is found
only when DISP is PASS. The end-of-volume condition might result
from issuing an FEOV macro or might be the result of reaching the
end of a volume.

If DISP is PASS in the DD statement, the tape is spaced forward to
the end of the data set on the current volume.

If any DISP option is coded in the DD statement (except when
DISP is PASS), the resultant action when an end-of-volume
condition arises depends on (1) how many tape units are allocated
to the data set and (2) how many volumes are specified for the
data set in the DD statement. This is determined by the UNIT and
VOLUME parameters of the DD statement associated with the data
set. If the number of volumes is greater than the number of units
allocated, the current volume is rewound and unloaded. If the
number of volumes is less than or equal to the number of units, the
current volume is merely rewound.

Note: When the DELETE option is specified, the system waits for
the completion of the rewind operation before it continues
processing subsequent reels of tape.

310 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 OPEN

If you code DISP and issue a CLOSE TYPE=T, LEAVE processing
is performed. Any other options specified for CLOSE TYPE=T
besides LEAVE and REREAD are treated as LEAVE during
execution.

TYPE=J
You can code OPEN TYPE=J to specify that, for each data control block
referred to, you have supplied a job file control block (JFCB) for use during
initialization. A JFCB is an internal representation of information in a DD
statement. This option, because it may be used with modifying a JFCB, should
be used only by the system programmer or only under the system
programmer's supervision. MODE=31 is not allowed when TYPE=J is specified.

As without TYPE=J, when you specify TYPE=J, you must supply a DD
statement. The amount of information in the DD statement is up to you, but
you must specify the device allocation and a ddname that corresponds to the
associated data control block DCBDDNAM field. For more detailed information
on using TYPE=J, see DFSMS/MVS DFSMSdfp Advanced Services.

HFS files : When you specify TYPE=J, you cannot add or change the value of
PATH=. Only changes to LRECL, BLKSIZE, RECFM, BUFNO, and NCP have
an effect.

MODE=24|31
You can code OPEN MODE=31 to specify a long form parameter list that can
contain 31-bit addresses. Your program does not need to be executing in 31-bit
addressing mode to use MODE=31 in the OPEN macro. This parameter
specifies the form of the parameter list, not the addressing mode of the
program. The default, MODE=24, specifies a short form parameter list with
24-bit addresses. MODE=31 is not permitted if TYPE=J is specified. If TYPE=J
is specified, you must use the short form parameter list.

The caller of the standard form of the macro with the short form of the
parameter list must reside below the 16MB line, but the caller can be executing
in 31-bit mode. If you code the short form, all ACBs and DCBs must reside
below the 16MB line.

The long form parameter list can reside above or below the 16MB line.
Although the ACB or DCB address is contained in a 4-byte field, the DCB must
be below the 16MB line. Except for VSAM or VTAM ACBs, all ACBs must also
be below the 16MB line. Therefore, the leading byte of the ACB or DCB
address must contain zeros. If the byte contains something other than zeros,
an IEC190I message is issued and the data set is not opened. The program is
not abnormally terminated unless an attempt is made to read to or write from
the data set.

The following errors in opening a DCB cause the results indicated:

Error Result

Attempting to open a data control block that
is already open.

No action.

Attempting to open a data control block
when the DCB address does not specify the
address of a data control block.

Unpredictable.

 Chapter 7. Non-VSAM Macro Descriptions 311

 OPEN

Notes:

1. You need to test bit 3 of the DCBOFLGS field in the data control block. Bit 3 is
set to 1 if the data control block opened successfully, but is set to 0 if an error
occurs, and can be tested by the sequence:

TM DCBOFLGS,X'1ð'
BZ ERRORRTN (Branch to your error routine)

Executing the two instructions shown above requires writing a DCBD macro in
the program, and a base register must be defined with a USING statement
before the instructions are executed.

2. Other errors detected by OPEN result in an abend with a system completion
code in the form x13, where x is a hex digit from 0 to F. See OS/390 MVS
System Codes for the abend codes.

Error Result

Attempting to open a data control block
when a corresponding DD statement has
not been provided.

A “DD STATEMENT MISSING” message is
issued. An attempt to use the data set
causes unpredictable results (see note 1 on
page 312).

OPEN Return Codes
When your program receives control after issuing an OPEN macro, the return code
in register 15 indicates if all the data sets were opened successfully.

The OPEN return codes are:

Return Code (15) Meaning

0(X'0') All data sets were opened successfully.

4(X'4') All data sets were opened successfully, but one or more
attention messages were issued.

8(X'8') At least one data set (VSAM or non-VSAM) was not opened
successfully; the ACB or DCB was restored to the contents it
had before OPEN was issued; or, if the data set was already
open, the ACB or DCB remains open and usable and is not
changed.

12(X'C') A non-VSAM data set was not opened successfully when a
non-VSAM and a VSAM data set were being opened at the
same time; the non-VSAM data control block was not restored
to the contents it had before OPEN was issued (and the data
set cannot be opened without restoring the control block).

 OPEN—List Form
The list form of the OPEN macro constructs a data management parameter list.
You can specify any number of parameters (DCB addresses and associated
options).

There are two forms of the list, the short form and the long form. The short form list
consists of a one-word entry for each DCB or ACB in the parameter list. The
high-order byte is used for the options and the 3 low-order bytes are used for the
DCB address. The long form list consists of an eight byte entry for each DCB or

312 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 OPEN

ACB in the parameter list. The high order byte is used for the options and the low
order four bytes are used for the DCB or ACB address. For either form of list, the
end of the list is indicated by a 1 in the high-order bit of the last entry's option byte.
The length of a list generated by a list form instruction must be equal to the
maximum length list required by any execute form instruction that refers to the
same list. A maximum length list can be constructed by one of two methods:

� Code a list-form instruction with the maximum number of parameters required
by an execute form instruction that refers to the list.

� Code a maximum length list by using commas in a list-form instruction to
acquire a list of the appropriate size. For example, coding OPEN (,,,,,,,,,),MF=L
would provide a list of 5 fullwords (5 DCB addresses and 5 options).

Entries at the end of the list not referred to by the execute-form instruction are
assumed to have been filled in when the list was constructed or by a previous
execute-form instruction. Before using the execute-form instruction, you can shorten
the list by placing a 1 in the high-order bit of the last DCB entry to be processed.

A zeroed work area on a fullword boundary is equivalent to OPEN
(,(INPUT,DISP),...),MF=L and can be used in place of a list-form instruction.
Allocate four bytes per entry if you wish the effect of MODE=24. Allocate eight
bytes per entry if you wish the effect of MODE=31. The high-order bit of the last
DCB entry must contain a 1 before this list can be used with the execute-form
instruction.

A parameter list constructed by an OPEN, list-form, macro can be referred to by
either an OPEN or CLOSE execute form instruction. The description of the
standard form of the OPEN macro explains the function of each parameter.

The list form of the OPEN macro is:

dcb address—A-Type Address

MF=L
specifies that the OPEN macro is used to create a data management
parameter list that is referred to by an execute form instruction.

TYPE=J
coded the same as the standard form. This has no effect on the macro
expansion.

MODE=24|31
coded the same as the standard form. This specification must match that of the
execute form. Errors and unpredictable results occur if the modes are
inconsistent.

[label] OPEN ([dcb address],[(options)],...) ,MF=L [,TYPE=J]
[,MODE=24|31]

 Chapter 7. Non-VSAM Macro Descriptions 313

 PDAB

 OPEN—Execute Form
A remote data management parameter list is used in, and can be modified by, the
execute form of the OPEN macro. The parameter list can be generated by the list
form of either an OPEN or CLOSE macro.

The description of the standard form of the OPEN macro explains the function of
each parameter. The execute form of the OPEN macro is:

dcb address—RX-Type Address or (2-12)

MF=(E,data management list address)
specifies the execute form of the OPEN macro is used, and an existing data
management parameter list (created by a list-form instruction) is used. MF= is
coded as follows:

E

data management list address—RX-Type, (2-12), (1)

TYPE=J
coded the same as the standard form.

MODE=24|31
coded the same as the standard form. This specification must match that of the
list form.

[label] OPEN [([dcb address],[(options)],...)]
,MF=(E,data management list address)
[,TYPE=J]
[,MODE=24|31]

PDAB—Construct a Parallel Data Access Block (QSAM)
The PDAB macro is used with the GET (TYPE=P) macro. It defines an area in the
problem program where the open and close routines build and maintain a queue of
DCB addresses for use by the get routine.

The parallel data access block is constructed during the assembly of the problem
program. MAXDCB must be coded in the PDAB macro, because it cannot be
supplied from any other source.

Certain data set characteristics prevent a DCB address from being available on the
queue—see the description of QSAM parallel input processing in DFSMS/MVS
Using Data Sets.

Note: A PDAB should not be used if a QSAM GET will be used in 31-bit
addressing mode.

HFS files

OPEN ignores the PDAB for a DCB that is for an HFS file or subsystem data set.

The format of the PDAB macro is:

[label] PDAB MAXDCB=absexp

314 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 POINT

MAXDCB=absexp (maximum value is 32767 bytes)
specifies the maximum number of DCBs that you require in the queue for a
GET request.

Note: The number of bytes required for PDAB is equal to 24+8n, where n is
the value of the keyword, MAXDCB.

PDABD—Provide Symbolic Reference to a Parallel Data Access Block
(QSAM)

The PDABD macro generates a dummy control section that provides symbolic
names for the fields in one or more parallel data access blocks. The names,
attributes, and descriptions of the fields appear in “PDABD Symbolic Field Names.”

The name of the dummy control section generated by a PDABD macro is
IHAPDAB. A USING instruction specifying IHAPDAB and a dummy section base
register containing the address of the actual parallel data access block should
come before any of the symbolic names provided by the dummy section. You may
code the PDABD macro once in any assembled module. However, you can use the
resulting symbolic names for any number of parallel data access blocks by
changing the address in the dummy section base register. You can code the
PDABD macro at any point in a control section. If coded at any point other than at
the end of a control section, the control section must be resumed by coding a
CSECT instruction.

The format of the PDABD macro is:

b PDABD b

PDABD Symbolic Field Names
The following describes PDABD fields of the dummy control section generated by
the PDABD macro. Included are the names, attributes, and descriptions of the
dummy control section.

PDABD
IHAPDAB DSECT
PDANODCB DS H Number of DCB addresses in list.
PDAMAXCB DS H Maximum number of addresses allowed.
 DS A Reserved for IBM use.
 DS F Reserved for IBM use.
PDADCBLA DS A Address of last DCB entry.
PDADCBEP DS A Address of DCB entry last processed.
 DS F Reserved for IBM use.
PDADCBAL EQU * Start of DCB list.

POINT—Position for Access (BPAM and BSAM—Tape and DASD Only)
| The POINT macro causes the next READ or WRITE operation to be for the
| specified data set block on the current volume for BSAM or on the current data set
| for BPAM. With BPAM concatenation, you may switch to a different data set with
| the FIND macro. Before you issue the POINT macro, test for completion of all input
| and output operations using the same data control block. If you are processing a
| data set opened for UPDAT, the next operation against the DCB after the POINT

 Chapter 7. Non-VSAM Macro Descriptions 315

 POINT

| macro must be a READ macro. If you are processing an output data set, the next
| operation against the DCB after the POINT macro must be a WRITE macro before
| you close the data set, unless you have already issued the CLOSE macro (with
| TYPE=T specified) before the POINT macro.

The POINT macro with the REL parameter, which is the default, works with any
magnetic tape drive. However, POINT with the ABS parameter works only on
cartridge tapes, such as the 3480.

The POINT macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

| Spooled Data Sets

| The (NOTE and) POINT macros cannot be used with spooled data sets.

Subsystem Data Sets

| A subsystem data set is represented by a DD statement that has the SUBSYS
| keyword.

| The NOTE and POINT macros with TYPE=REL specified or defaulted can be used
| for subsystem data sets if the subsystem supports it. Assume it does not work
| unless the subsystem documentation says it is supported. If the subsystem does
| not support it, the results are unpredictable.

HFS Files: The POINT macro can be issued for HFS files, except for FIFO or
character special files or with PATHOPTS=OAPPEND.

Using POINT with PDSEs: The POINT macro establishes a connection to the
PDSE member and the connection is maintained until the PDSE is closed. The
POINT macro can start the next READ or WRITE operation at the beginning of a
member or anywhere within a member. To position to a record within another
member, issue a POINT or FIND macro to the beginning of that member, then
issue another POINT to position to the record you want. You cannot position from
one PDSE member to a record other than the first block in another member
because either data from the first member record will be read, or an I/O error will
occur.

If you issued a CLOSE TYPE=T and are not open for INPUT, UPDAT, or RDBACK
and are positioned to other than the end of the data set but do not want to truncate
it, you must reposition to the end of the data set before closing it.

When a PDSE is open for output, if you use the POINT macro to position to a
member other than the member currently processing, it results in an I/O error on
the next write.

POINT positions to the first segment of a spanned record even if the NOTE was
done on another segment. If the current record spans blocks, set the z byte of the
TTR field to one to access the next record (not segment).

The standard form of the POINT macro is:

316 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 POINT

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened data set to be
positioned.

block address—RX-Type Address, (2-12), or (0)
indicates which block in the data set is processed next.

| For a magnetic tape drive, when TYPE=ABS is specified, the block address
| specifies the address of a fullword on a fullword boundary that contains the
| physical block identifier of the block in the data set that is to be processed next.
| If you code (0), it means register zero contains the block identifier and not the
| address. Do not code a reference to register 0 with a symbol; it will give
| unpredictable results. This physical block identifier is provided as output from a
| prior execution of the NOTE macro.

When TYPE=REL is specified or defaults, the block address specifies the
address of a fullword on a fullword boundary that contains the relative address
of the block in the data set that is to be processed next. The relative address
is specified as follows:

Magnetic Tape: The block number is in binary and right-adjusted in the
fullword with the high-order bits set to 0; add 1 if reading tape backward. Do
not use the POINT macro for tapes without standard labels when:

� The data set is opened for RDBACK, or
� The DD statement for the data set specifies DISP=MOD.

If OPTCD=H is indicated in the data control block, you can use the POINT
macro to perform record positioning on VSE6 tapes that contain embedded
checkpoint records. Any embedded checkpoint records found during the record
positioning are bypassed and not counted as blocks spaced over. OPTCD=H
must be specified in a job control language DD statement. Do not use the
POINT macro to backspace VSE 7-track tapes written in data convert mode
and that contain embedded checkpoint records.

Note: When an end-of-data condition is reached on magnetic tape, you must
first reposition the tape for processing your data set. Then, you can
issue the POINT macro; otherwise, the POINT operation will fail.
(Issuing CLOSE TYPE=T is an easy method to use to accomplish
repositioning in your EODAD routine.)

Direct Access Storage Devices

TTRz format, where:

TTR specifies a 3-byte field indicating the relative track address of the
block.

Note: For a PDSE, an extended format data set, or an HFS file,
the TTR is a token that does not represent the physical
location of the data set member.

[label] POINT dcb address
,block address
[,TYPE={ABS|REL }]

6 VSE (Virtual Storage Extended) tapes used to be called DOS tapes.

 Chapter 7. Non-VSAM Macro Descriptions 317

 POINT

z specifies a byte set to zero. You may set this byte to X'01' to
retrieve the block following the block that is identified by the other
three bytes.

Note: The first block of a magnetic tape data set is always specified by the
hexadecimal value 0000 0001. The first block of a direct access storage
device data set can be specified by either hexadecimal 0000 0001
(except for PDSEs) or 0000 0100 (see the preceding description of
TTRz).

Using POINT with Extended Format Data Sets:

Input to POINT should be a BLTZ derived from NOTE. (A BLT is a block
locator token which defines the relative block number (RBN) of a block within
an extended format data set.) The 'BLT0' value from NOTE may be modified
by setting the low order byte (the Z byte) to 1 in order to obtain the block
following the block defined by the BLT0.

If you issue a POINT to a location past the end of the data set or after the
block that follows the most recent WRITE, the next READ or WRITE will result
in an I/O error. A POINT issued immediately following an open for output (while
positioned to the beginning of the data set) will cause the next WRITE to result
in an I/O error. Also, whenever an I/O error is encountered, any further POINTs
will cause the subsequent READ or WRITES to result in an I/O error.

When processing compressed format data sets, the token processed by NOTE
and POINT will refer to the user relative block number (user RBN) within the
data set as opposed to the physical RBN within the data set.

Using POINT with HFS files:

� POINT is supported for HFS files, except for FIFO or character special files,
or when PATHOPTS=OAPPEND.

� The TTRz passed to POINT should be a token derived from NOTE. You
can modify the token by setting the low order byte (the z byte) to 1 to get
the block following the block defined by the token. The token is the relative
record number (RRN) from the beginning of the file.

� A POINT to a location past the end of the file or after a block that follows
the most recent WRITE gives an I/O error for the next READ or WRITE.

� Unless preceded by another POINT, a POINT to an invalid value gives an
I/O error for the next READ or WRITE.

� In a binary file with RECFM=V(B) or RECFM=U, a POINT to other than the
first block results in an abend.

TYPE={ABS|REL }
indicates whether the block address is a physical block identifier or a relative
address.

ABS
indicates that the block address specifies an address of a fullword on a
fullword boundary containing a physical block identifier of the block in the
data set that is to be processed next. This option is only for a cartridge
tape.

REL
indicates that the block address specifies an address of a fullword on a
fullword boundary containing the relative address of the block in the data

318 DFSMS/MVS V1R5 Macro Instructions for Data Sets

set that is to be processed next. This option is for DASD (including HFS) or
tape

If the volume cannot be positioned correctly or if the block identification is not of the
correct format, the error analysis (SYNAD) routine is given control when the next
CHECK macro is executed.

POINT Completion Codes
When the system returns control to your problem program and you have specified
the ABS parameter, the low-order byte of register 15 contains a return code. If
return code = 08, the low-order byte of register 0 contains a reason code.

The POINT return and reason codes are:

If TYPE=ABS is Specified
Return Code (15) Reason Code (0) Meaning

00 (X'00') Successful completion.

04 (X'04') Device does not support block
identifier.

08 (X'08') 01 (X'01') Incorrect parameter.

08 (X'08') 02 (X'02') Incorrect DCB or a DEB error.

08 (X'08') 03 (X'03') Environmental error.

08 (X'08') 11 (X'0B') Unsuccessful call to ESTAE
macro.

08 (X'08') 12 (X'0C') Insufficient virtual storage
available.

12 (X'0C') Input/output error.

If TYPE=REL is Specified
None.

| POINT TYPE=ABS—List Form
| You can use the list form of the POINT macro when you code TYPE=ABS. This list
| form constructs a parameter list.

| The description of the standard form of the POINT macro explains the function of
| each parameter. The format description below shows the optional and required
| parameters in the list form only.

| The list form of the POINT macro is:

| [label]| POINT| [,block number]
| ,TYPE=ABS
| ,MF=L

 Chapter 7. Non-VSAM Macro Descriptions 319

 PRTOV

| block number—absolute arithmetic expression. It is the absolute block identifier, not
| its address. You can code a symbolic expression. It can contain a hexadecimal
| value.

| TYPE=ABS
| indicates that the block number is a physical block identifier.

| MF=L
| specifies that the POINT macro is used to create a parameter list for the POINT
| macro with TYPE=ABS.

| POINT TYPE=ABS—Execute Form
| You can use the execute form of the POINT macro when you code TYPE=ABS.
| The execute form uses and can modify a parameter list that is generated by the list
| form.

| The description of the standard form of the POINT macro explains the function of
| each parameter. The format description below shows the optional and required
| parameters in the execute form only.

| The execute form of the POINT macro is:

| dcb address—RX-type address, (2-12)

| block address—RX-type address, (2-12) or (0).

| TYPE=ABS
| indicates that the block number is a physical block identifier.

| MF=(E,list-address)
| specifies the execute form of the POINT macro and an existing parameter list
| that was generated with MF=L. Initialize the parameter list before executing the
| execute form. Specify block address in either or both forms.

| [label]| POINT| dcb address
| [,block number]
| ,TYPE=ABS
| ,MF=(E,list-address)

PRTOV—Test for Printer Carriage Overflow (BSAM and QSAM—Online
Printer and 3525 Card Punch)

The PRTOV macro controls the page format for a directly-allocated printer when
carriage control characters are not used or to supplement the carriage control
characters being used. A directly-allocated (online) printer is allocated to the
application program and is not a spooled data set.

The PRTOV macro tests for an overflow condition on the specified channel (either
channel 9 or channel 12) of the printer carriage control, and either skips the printer
carriage to the line corresponding to channel 1, or transfers control to the exit
address, if one is specified. Overflow is detected after printing the line that follows

320 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PRTOV

the line corresponding to channel 9 or channel 12. You should issue the PRTOV
macro each time you want the system to test for an overflow condition.

When the PRTOV macro is used with a 3525 card punch, print feature, channel 9
or 12 can be tested. If an overflow condition occurs, control is passed to the
overflow exit routine if the overflow exit address is coded, or a skip to channel 1
(first print-line of the next card) occurs.

When requesting overprinting (for example, to underscore a line), issue the PRTOV
macro before the first PUT or WRITE macro only. The PRTOV macro is useful
only for directly-allocated printers. PRTOV has no effect for other devices, such as
SYSOUT data sets or the 3525 card punch without the printing feature. You cannot
use PRTOV to request overprinting on the 3525. The effect of overprinting differs
for various printer models. See the appropriate device reference manual.

The PRTOV macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the PRTOV macro is:

dcb address—RX-Type Address or (2-12)
specifies the address of the data control block opened for output to a
directly-allocated printer or 3525 card punch with a print feature.

9
12 These parameters specify the channel to be tested by the PRTOV macro. For a

directly-allocated printer, 9 and 12 correspond to carriage control channels 9
and 12. For the 3525 card punch, 9 corresponds to print line number 17, and
12 corresponds to print line number 23. More detail about the card print-line
format is included in Programming Support for the IBM 3505 Card Reader and
the IBM 3525 Card Punch

overflow exit address—RX-Type Address or (2-12)
specifies the address of the user-supplied routine given control when an
overflow condition is detected on the specified channel. If this parameter is
omitted, the printer carriage skips to the first line of the next page or the 3525
skips to the first line of the next card before executing the next PUT or WRITE
macro.

The overflow exit routine receives control in the addressing mode in which you
issue the PRTOV macro. If you issue PRTOV in 31-bit addressing mode, the
overflow exit routine may reside above the 16MB line.

When the overflow exit routine is given control, the contents of the registers are as
follows:

[label] PRTOV dcb address
,{9|12}
[,overflow exit address]

Register Contents

0 and 1 The contents are destroyed.

2 - 13 The same contents as before the macro was executed.

14 Return address.

 Chapter 7. Non-VSAM Macro Descriptions 321

 PUT

Register Contents

15 Overflow exit routine address.

PUT—Write Next Record (QISAM)
Use of QISAM is not recommended. We recommend you use VSAM instead.

The PUT macro writes a record into an indexed sequential data set. If the move
mode is used, the PUT macro moves a logical record into an output buffer from
which it is written. If locate mode is specified, the address of the next available
output buffer segment is available in register 1 after the PUT macro is executed.
The logical record can then be constructed in the buffer for output as the next
record.

The records are blocked by the system (if specified in the data control block) before
being placed in the data set. The system uses the length specified in the record
length (DCBLRECL) field of the data control block as the length of the record
currently being written. When constructing blocked variable-length records in the
locate mode, the problem program might either specify the maximum record length
once in the DCBLRECL field of the data control block or provide the actual record
length in the DCBLRECL field before issuing each PUT macro. Using the maximum
record length may result in more but shorter blocks, because the system uses this
length when it tests to see if the next record can be contained in the current block.

The PUT macro is used to write a new indexed sequential data set or extend it. To
extend the data set, the key of any added record must be higher than the highest
key existing in the data set, and the disposition parameter of the DD statement
must be specified as DISP=MOD. The new records are placed in the prime data
space, starting in the first available space, until the original space allocation is
exhausted.

To allocate a data set using previously allocated space, the disposition parameter
of the DD statement must specify DISP=OLD.

For QISAM, PUT must be issued in 24-bit mode.

The format of the PUT macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened indexed
sequential data set.

area address—RX-Type Address, (2-12), or (0)
specifies the address of the area containing the record to be written (move
mode only). Either move or locate mode can be used with QISAM, but they
must not be mixed in the specified data control block. The following describes
operations for locate and move modes:

Locate Mode: If locate mode is specified in the data control block, the area
address must be omitted. The system returns the address of the next available

[label] PUT dcb address
[,area address]

322 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

buffer in register 1. This is the buffer into which you should move the next
record. The record is not written until another PUT macro is issued for the
same data control block or a CLOSE macro is issued to close the data set.

Move Mode: If move mode has been specified in the data control block, the
area address must specify the address in the problem program that contains
the record to be written. The system moves the record from the area to an
output buffer before control is returned. If the area address is omitted, the
system assumes that register 0 contains the area address.

PUT Routine Exit
The error analysis (SYNAD) routine is given control if the output operation cannot
be completed satisfactorily. The contents of the registers when the error analysis
routine is given control are described in “Status Information Following an
Input/Output Operation” on page 393.

PUT—Write Next Record (QSAM)
The PUT macro writes a record in a sequential data set, partitioned data set, PDSE
or HFS file. Various modes are available and are specified in the DCB macro. The
modes are locate mode, move mode, and data mode. In the locate mode, the
address of an area in an output buffer is returned in register 1 after the PUT macro
is executed. You should then construct, at this address, the next sequential record
or record segment. If the move mode is used, the PUT macro moves a logical
record into an output buffer. In the data mode, which is available only for
variable-length spanned records, the PUT macro moves only the data portion of the
record into one or more output buffers.

The records are blocked by the control program (as specified in the data control
block) before being placed in the data set. For undefined-length records, the
DCBLRECL field determines the length of the record that is subsequently written.
For variable-length records, the DCBLRECL field is used to locate a buffer segment
of sufficient size (locate mode), but the length of the record actually constructed is
verified before the record is written (the output block can be filled to the maximum
if, before issuing the PUT macro, DCBLRECL is set equal to the record length). For
variable-length spanned records, the system segments the record according to the
record length, buffer length, and amount of unused space remaining in the output
buffer. The smallest segment created is 5 bytes, 4 for the segment descriptor word
plus 1 byte of data.

| Data Conversion

| You can request conversion by coding LABEL=(,AL) or (,AUL) in the DD statement,
| or by coding OPTCD=Q in the DCB macro or DCB subparameter of the DD
| statement. When conversion is requested, all QSAM records whose record format
| (RECFM parameter) is F, FB, D, DS, DB, DBS, or U are automatically converted
| from one character representation to another. Conversion is performed according to
| one of the following techniques:

| � Coded Character Set Identifier (CCSID) Conversion

| If CCSIDs are supplied from any source7 for ISO/ANSI V4 tapes, records are
| converted from the CCSID as seen by the problem program to the CCSID

 Chapter 7. Non-VSAM Macro Descriptions 323

 PUT

| which represents the data on tape. You can also prevent conversion by
| supplying a special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied by any
| source, data management converts the records from EBCDIC code to ASCII
| code using specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete description of
| CCSID conversion and Default Character conversion.

The PUT macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses. This
includes allowing the caller to issue QSAM macros in 31-bit addressing mode
regardless of whether the buffers are above or below the 16MB line. Most types of
data sets support 31-bit mode. See “31-Bit Addressing Mode” on page 165.

QSAM allows data areas to be located above the 16MB line. To take advantage of
providing data areas above the 16MB line for QSAM macros, the issuer of the PUT
macro must then execute in 31-bit addressing mode. To take advantage of QSAM
buffers above the line, you must specify for OPEN to obtain the buffers above the
line and the issuer of the PUT macro must then execute in 31-bit addressing mode.
To specify that OPEN is to get buffers above the 16MB line, code
RMODE31=BUFF on the DCBE macro.

The format of the PUT macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the data set opened for
output.

area address—RX-Type Address, (2-12), or (0)
specifies the address of an area containing the record to be written (move or
data mode). The move, locate, or data mode can be used with QSAM, but they
must not be mixed in the specified data control block. When issued in 31-bit
addressing mode, the input area address (move or data mode) must be clean
31-bit addresses. For move or data mode, if the input area address resides
above the 16MB line, you must issue the PUT in 31-bit mode. If you requested
that OPEN get buffers above the 16MB line, the PUT must be issued in 31-bit
mode. If the area address is omitted in the move or data mode, the system
assumes that register zero contains the area address. The following describes
the operation of the three modes:

Locate Mode: If you specify locate mode, omit the area address. The system
returns the address of the next available buffer in register 1. This is the buffer
into which your program later places the next record.

When variable-length spanned records are processed without the extended
logical record interface (XLRI), and a record area is provided for a logical

[label] PUT dcb address
[,area address]

| 7 CCSID may be supplied in the CCSID subparameter of a JOB, EXEC, or DD statement or the tape label.

324 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 PUT

record interface (LRI) (BFTEK=A has been specified in the data control block or
a BUILDRCD macro has been issued), the address returned in register 1 points
to an area large enough to contain the maximum record size (up to 32756
bytes). The system segments the record and writes all segments, providing
proper control codes for each segment. If, for variable-length spanned records,
a record area has not been provided, the actual length remaining in the buffer
is returned in register 0. In this case, you must segment the records and
process them in record segments. ISO/ANSI spanned records, RECFM=DS or
RECFM=DBS, cannot be processed in segment mode. The record or segment
is not written until another PUT macro is issued for the same data control block
or an FEOV or CLOSE macro is issued.

When a PUT macro is used in the locate mode, the address of the buffer for
the first record or segment is obtained by issuing a PUT macro after open.
QSAM returns the address in register 1. Then, move data to this address. The
buffer is not written to the data set until the next PUT macro is issued. If
records are blocked, the data is not written to the data set until the PUT
following the one that filled the buffer. Each PUT macro returns the address of
the next buffer in register 1. After this address is given to you, QSAM always
counts this address as a valid record. You should always place valid data at
the address returned in register 1 before issuing another PUT or FEOV or
CLOSE macro. Otherwise, residual data at that location is written to the data
set. After issuing an FEOV macro (for multivolume data sets), you must
reinitialize register 1 with the first buffer address for the next volume by issuing
a PUT macro after return from FEOV.

Move Mode: If move mode is specified in the data control block, the area
address specifies the address of the area containing the record to be written.
The system moves the record to an output buffer before control is returned.

Data Mode: If data mode is specified in the data control block (data mode can
be specified for variable-length spanned records only), the area address
specifies the address of an area in the problem program that contains the data
portion of the record to be written. The system moves the data portion of the
record to an output buffer before control is returned. You must place the total
data length in the DCBPRECL (not the DCBLRECL) field of the data control
block before issuing the PUT macro.

Extended Logical Record Interface (XLRI): When the PUT macro is used
with the extended logical record interface, the address returned in register 1
points to an area used to build a 4-byte logical record length field (RDW)
followed by a complete logical record. The logical record length byte count
occupies the 3 low-order bytes of the record length field and must include the
length of the field. The high-order byte must be zero. The DCB LRECL value
indicates the length of the longest logical record of the data set in 'K'
(1024-byte) units.

PUT Routine Exit
If the output operation cannot be completed satisfactorily due to an uncorrectable
I/O error, the error analysis (SYNAD) routine is given control after a later PUT
instruction is issued. The contents of the registers when the error analysis routine is
given control are described in DFSMS/MVS Using Data Sets.

If your SYNAD routine is entered, it is entered in the addressing mode in which the
PUT was issued. If you supplied a SYNAD routine which resides above the line in

 Chapter 7. Non-VSAM Macro Descriptions 325

 PUTX

the DCBE, then the PUT must be issued in 31-bit addressing mode. On entry to
the SYNAD routine, register 1 contains error flags in byte 0 followed by the DCB
address in bytes 1-3. For 31-bit callers, the caller must save the error flags, if
needed, and then clear the high order byte of register 1 before using it to access
fields within the DCB in the SYNAD routine.

PUTX—Write a Record from an Existing Data Set (QISAM and QSAM)
The PUTX macro returns an updated record to a data set (QISAM and QSAM) or
writes a record from an input data set into an output data set (QSAM only). There
are two modes of the PUTX macro. The output mode (QSAM only) allows writing a
record from an input data set on a different output data set. The output data set
can specify the spanning of variable-length records, but the input data set must not
contain spanned records.

The update mode returns an updated record to the data set from which it was read.
The logical records are blocked by the control program, as specified in the data
control block, before they are placed in the output data set. The control program
uses the length specified in the DCBLRECL field as the length of the record
currently being stored. Control is not returned to your user program until the control
program processes the record.

For SYSOUT data sets, the PUTX macro can be used only in the output mode.

The record descriptor word in variable-length records must not be changed.

The PUTX macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses. This
includes allowing the caller to issue QSAM macros in 31-bit addressing mode
regardless of whether the buffers are above or below the 16MB line. Most types of
data sets support 31-bit mode. See “31-Bit Addressing Mode” on page 165.

QSAM allows data areas to be located above the 16MB line. To take advantage of
providing data areas above the 16MB line for QSAM macros, the issuer of the
PUTX macro must then execute in 31-bit addressing mode. To take advantage of
QSAM buffers above the line, you must specify for OPEN to obtain the buffers
above the line and the issuer of the PUTX macro must then execute in 31-bit
addressing mode. To specify that OPEN is to get buffers above the 16MB line,
code RMODE31=BUFF on the DCBE macro.

The format of the PUTX macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for a data set opened for output.

input dcb address—RX-Type Address, (2-12), or (0)
specifies the address of a data control block opened for input. When issued in
31-bit addressing mode, the input DCB address must be a clean 31-bit
address. If you requested that OPEN get buffers above the 16MB line, the
PUTX must be issued in 31-bit mode. The PUTX macro can be used for the
following modes:

[label] PUTX dcb address
 [,input dcb address]

326 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 READ

Output Mode: This mode is used with QSAM only. The input dcb address
specifies the address of the data control block opened for input. If this
parameter is omitted, the system assumes that register 0 contains the input dcb
address.

Update Mode: The input dcb address is omitted for update mode.

PUTX Routine Exit
The error analysis (SYNAD) routine is given control if the operation is not
completed satisfactorily due to an uncorrectable I/O error. The contents of the
registers when the error analysis routine is given control are described in
DFSMS/MVS Using Data Sets.

If your SYNAD routine is entered, it is entered in the addressing mode in which the
PUTX was issued. If you supplied a SYNAD routine which resides above the line in
the DCBE, the PUTX must be issued in 31-bit addressing mode. On entry to the
SYNAD routine, register 1 contains error flags in byte 0 followed by the DCB
address in bytes 1-3. For 31-bit callers, the caller must save the error flags, if
needed, and then clear the high order byte of register 1 before using it to access
fields within the DCB in the SYNAD routine.

READ—Read a Block (BDAM)
Use of BDAM is not recommended. We recommend you use BSAM, BPAM, or
QSAM instead.

The READ macro retrieves a block from a data set and places it in a designated
area of storage. Control might be returned to the problem program before the block
is retrieved. The input operation must be tested for completion using a CHECK or
WAIT macro. A data event control block, shown in “Status Information Following an
Input/Output Operation” on page 393, is constructed as part of the macro
expansion.

The READ macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

The standard form of the READ macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block created as part of
the macro expansion.

[label] READ decb name
,{DI[F|X][R|RU]}
{DK[F|X][R|RU]}

,dcb address
,{area address|'S'}
,{length|'S'}
,{key address|'S'|0}
,block address
[,next address]

 Chapter 7. Non-VSAM Macro Descriptions 327

 READ

type—{DI[F|X][R|RU]}
 {DK[F|X][R|RU]}

is coded in one of the combinations shown above to specify the type of read
operation and the optional services performed by the system:

DI specifies that the data and key, if any, are read from a specific device
address. The device address, which can be designated by any of the three
addressing methods, is supplied by the block address.

DK
specifies that the data (only) is read from a device address identified by a
specific key. The key used as a search argument must be supplied in the
area specified by the key address. The search for the key starts at the
device address supplied in the area specified by the block address. The
description of the DCB macro, LIMCT, contains a description of the search.

F requests that the system provide block position feedback into the area
specified by the block address. This character can be coded as a suffix to
DI or DK as shown above.

X requests exclusive control of the data block being read, and that the system
provide block position feedback into the area specified by the block
address. If OPTCD=F is not specified, the feedback is provided in the form
of an 8-byte absolute address (MBBCCHHR). The descriptions of the
WRITE and RELEX macros contain a description of releasing a data block
under exclusive control. This character can be coded as a suffix to DI or
DK as shown above.

R requests the system provide next address feedback into the area specified
by next address. When R is coded, the feedback is the relative track
address of the next data record. This character can be coded as a suffix to
DI, DK, DIF, DIX, DKF, or DKX as shown above, but can be coded only for
use with variable-length spanned records.

RU
requests the system provide next address feedback into the area specified
by the next address. When RU is coded, the feedback is the relative track
address of the next capacity record (R0) or data record whichever occurs
first. These characters can be coded as a suffix to DI, DK, DIF, DIX, DKF,
or DKX, but it can be coded only for use with variable-length spanned
records.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block opened for the data set to be
read.

area address—A-Type Address, (2-12), or 'S'
specifies the address of the area in which the data block is to be placed. If 'S'
is coded instead of an address, dynamic buffering is requested (dynamic
buffering must also be specified in the MACRF parameter of the DCB macro).
When dynamic buffering is used, the system acquires a buffer and places its
address in the data event control block.

length—symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of data bytes to be read up to a maximum of 32760. If
'S' is coded instead of a length, the number of bytes to be read is taken from
the data control block. If neither length nor 'S' is specified, no error indication

328 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 READ

is given when your program is assembled, but your program must insert a
length into the data event control block (DECB) before the READ is issued.

key address—A-Type Address, (2-12), 'S', or 0
specifies the address of the area for the key of the desired data block. If the
search operation is made using a key, the area must contain the key.
Otherwise, the key is read into the designated area. If the key is read and 'S'
was coded for the area address, you can also code 'S' for the key address;
the key and data are read sequentially into the buffer acquired by the system. If
the key is not to be read, specify 0 instead of an address or 'S'.

block address—A-Type Address or (2-12)
specifies the address of the area containing the relative block address, relative
track address, or actual device address of the data block to be retrieved. The
device address of the data block retrieved is placed in this area if block position
feedback is requested. The length of the area containing the address depends
on whether the feedback option (OPTCD=F) is specified in the data control
block and if the READ macro requested feedback.

If OPTCD=F is specified, feedback (if requested) is in the same form as
originally presented by the READ macro, and the field can be either 3 or 8
bytes long, depending on the type of addressing.

If OPTCD=F is not specified, feedback (if requested) is as an actual device
address, and the field must be 8 bytes long.

next address—A-Type Address or (2-12)
specifies the address of the storage area in which the system places the
relative address of the next block. Length must be specified as 'S'. When next
address is specified, an R or RU must be added to the type parameter (for
example, DIR or DIRU). The R indicates that the next address returned is the
next data record. RU indicates that the next address returned is for the next
data or capacity record, whichever occurs first. The next address parameter
can be coded only for use with variable-length spanned records.

READ—Read a Block of Records (BISAM)
Use of BISAM is not recommended. We recommend you use VSAM instead.

The READ macro retrieves an unblocked record, or a block containing a specified
logical record, from a data set. The block is placed in a designated area of storage,
and the address of the logical record is placed in the data event control block. The
data event control block is constructed as part of the macro expansion and is
described in “Status Information Following an Input/Output Operation” on page 393.

Control might be returned to the problem program before the block is retrieved. The
input operation must be tested for completion using a WAIT or CHECK macro.

The READ macro for BISAM must be issued in 24-bit mode.

The standard form of the READ macro is written as follows for BISAM (the list and
execute forms are shown following the descriptions of the standard form):

 Chapter 7. Non-VSAM Macro Descriptions 329

 READ

decb name—symbol
specifies the name assigned to the data event control block (DECB) created as
part of the macro expansion.

type—{K|KU}
is coded as shown to specify the type of read operation:

K specifies normal retrieval.

KU
specifies that the record retrieved is updated and returned to the data set.
The system saves the device address to be returned.

When an indexed sequential data set is being updated with a READ KU
macro and a WRITE K macro, both the READ and WRITE macros must
refer to the same data event control block. This update operation can be
performed by using a list-form instruction to create the list (data event
control block) and by using the execute form of the READ and WRITE
macros to refer to the same list.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened data set to be
read.

area address—A-Type Address, (2-12), or 'S'
specifies the address of the area in which the data block is placed. The first 16
bytes of this area are used by the system and do not contain information from
the data block. The area address must specify a different area than the key
address. Dynamic buffering is specified by coding 'S' instead of an address.
The address of the acquired storage area is returned in the data event control
block. Indexed sequential buffer and work area requirements are described in
DFSMS/MVS Using Data Sets.

length—symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of bytes to be read up to a maximum of 32760. If 'S' is
coded instead of a length, the number of bytes to be read is taken from the
count field of the record. For blocked records, 'S' must be coded.

key address—A-Type Address or (2-12)
specifies the address of the area in the problem program containing the key of
a logical record in the block to be retrieved. When the input operation is
complete, the storage address of the logical record is placed in the data event
control block. The key address must specify a different area than the area
address.

[label] READ decb name
,{K|KU}
,dcb address
,{area address|'S'}
,{length|'S'}
,key address

330 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 READ

READ—Read a Block (BPAM and BSAM)
The READ macro retrieves a block from a data set and places it in a designated
area of storage (input area). Control might be returned to the problem program
before the block is retrieved. The input operation must be tested for completion
using a CHECK macro. A data event control block, shown in “Status Information
Following an Input/Output Operation” on page 393, is constructed as part of the
macro expansion.

If the OPEN macro specifies UPDAT, both the READ and WRITE macros must
refer to the same data event control block. (See the list form of the READ or
WRITE macro for a description of how to construct a data event control block. See
the execute form of the READ or WRITE macro for a description of how to modify
an existing data event control block.)

| Data Conversion

| For BSAM, you can request conversion by coding LABEL=(,AL) or (,AUL) in the DD
| statement, or by coding OPTCD=Q in the DCB macro or DCB subparameter of the
| DD statement. If conversion is requested, the check routine automatically converts
| BSAM records, as they are read, from one character representation to another if
| the record format is F, FB, D, DB, or U. Conversion occurs when the check routine
| determines that the input buffer is full. Conversion is performed according to one of
| the following techniques:

| � Coded Character Set Identifier (CCSID) Conversion

| If CCSIDs are supplied from any source8 for ISO/ANSI V4 tapes, records are
| converted from the CCSID which represents the data on tape to the CCSID as
| seen by the problem program. You can also prevent conversion by supplying a
| special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied by any
| source, data management converts the records from ASCII code to EBCDIC
| code using specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete description of
| CCSID conversion and Default Character conversion.

Note: When reading the PDSE directory, end-of-file is indicated after the last of
the directory data is read. Empty directory blocks are not simulated.

HFS Files: For an HFS file processed with RECFM=VB, each READ returns one
record per block.

Extended format data sets: On READ requests for extended format data sets,
that are not in the compressed format, you must provide a data area at least the
size of DCBBLKSI unless you are reading format-U records and code a length on
the READ macro. In that case, the data area must be at least the length coded.

When processing a compressed format data set and NOTE/POINT is specified in
the DCB (MACRF=P), a READ issued for a block whose user RBN value exceeds

| 8 CCSID may be supplied in the CCSID subparameter of a JOB, EXEC, or DD statement or the tape label.

 Chapter 7. Non-VSAM Macro Descriptions 331

 READ

16 777 215 will result in an I/O error. This is due to the fact that the NOTE/POINT
interface is limited by a 3 byte token.

The READ macro may be issued in 24- or 31-bit addressing mode. When issued in
31-bit addressing mode, all addresses must be valid 31-bit addresses.

BSAM and BPAM allow data areas to be located above the 16MB line. This
includes allowing the caller to issue most BPAM and BSAM macros in 31-bit
addressing mode regardless of whether the data area is above or below the 16MB
line. Most types of data sets support 31-bit mode. See “31-Bit Addressing Mode” on
page 165.

The standard form of READ must be issued from a program that resides below the
16MB line because the DECB must reside below the line.

To take advantage of providing data areas above the 16MB line for BSAM macros,
the issuer of the READ macro must execute in 31-bit addressing mode.

The standard form of the READ macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form instructions):

decb name—symbol
specifies the name assigned to the data event control block (DECB) created as
part of the macro expansion.

type—{SF|SB}
is coded as shown to specify the type of read operation:

SF specifies normal, sequential, forward retrieval.

SB
specifies a read-backward operation. This parameter can be specified only
for magnetic tape with format-F or format-U records.

This parameter is intended to be used when the data set is open for
RDBACK. Tape positioning, label processing, and volume mounting errors
will occur during EOV and CLOSE if an OPEN option other than RDBACK
is used.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened data set to be
read. When READ is issued in 31-bit addressing mode, the input DCB address
and area address must be clean 31-bit addresses.

area address—A-Type Address or (2-12)
specifies the address of the problem program area in which the block is placed.
When a READ SB macro is issued, the area address must be the address of
the last byte of the area into which the block is read. If the data set contains
keys, the key is read into the buffer followed by the data. If the input area
address resides above the 16MB line, you must issue the READ in 31-bit
mode.

[label] READ decb name
,{SF|SB}
,dcb address
,area address
[,length|,'S']

332 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 READ

length—symbol, decimal digit, absexp, (2-12), or 'S'
specifies the number of data bytes to be read, to a maximum of 32760. If the
data is converted from ASCII code to EBCDIC code, the maximum number of
bytes that can be read is 2048.

For format-U records, 'S' or a valid length must be coded. The number of
bytes to be read is taken from the data control block if 'S' is coded instead of
a number. (Do not code an explicit length for format-F or format-V records,
because it is ignored.)

For format-D records only, the length of the block just read is automatically
inserted into the DCBLRECL field by the check routine if BUFOFF=L is not
specified in the data control block.

READ—Read a Block (Offset Read of Keyed Direct Data Set Using
BSAM)

Use of BDAM is not recommended. We recommend you use BSAM, BPAM, or
QSAM instead.

The READ macro retrieves a block from a direct data set and places it in a
designated area of storage. The data set is a direct, and its record format is
unblocked variable-length spanned records. You must specify BFTEK=R in the data
control block. Control might be returned to the problem program before the block is
retrieved. The input operation must be tested for completion using a CHECK
macro. A data event control block, shown in “Status Information Following an
Input/Output Operation” on page 393, is constructed as part of the macro
expansion.

The standard form of the READ macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block (DECB) created as
part of the macro expansion.

type—SF
specifies normal, sequential, forward retrieval.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened direct data set to
be read.

area address—A-Type Address or (2-12)
specifies the address of the area in which the block is placed.

When a spanned direct data set is created with keys, only the first segment of a
record has a key; successive segments do not. When a spanned record is retrieved
by the READ macro, the system places a segment in a designated area addressed
by the area address. The problem program must assemble all the segments into a

[label] READ decb name
,SF
,dcb address
,area address

 Chapter 7. Non-VSAM Macro Descriptions 333

 READ

logical record. Because only the first segment has a key, the successive segments
are read into the designated area offset by key length to ensure that the
block-descriptor word and the segment-descriptor word are always in their same
relative positions.

 READ—List Form
The list form of the READ macro is used to construct a data management
parameter list as a data event control block (DECB). For a description of the
various fields of the DECB for each access method, see “Status Information
Following an Input/Output Operation” on page 393.

The description of the standard form of the READ macro explains the function of
each parameter. The description of the standard form also indicates the parameters
used for each access method, and the meaning of 'S' when coded for the area
address, length, and key address parameters. For each access method, 'S' can
be coded only for those parameters for which it can be coded in the standard form
of the macro. The format description below indicates the optional and required
parameters in the list form only.

The list form of the READ macro can be assembled into a program that resides
above the 16MB line, but the execute form of the macro cannot use it there. You
can copy it to below the 16MB line so the copy can be used, possibly in 31-bit
mode.

The list form of the READ macro is:

decb name—symbol

type—code one of the types shown in the standard form

dcb address—A-Type Address

area address—A-Type Address or 'S'

length—symbol, decimal digit, absexp, or 'S'

key address—A-Type Address or 'S'

block address—A-Type Address

next address—A-Type Address

MF=L
specifies that the READ macro is used to create a data event control block that
can be referred to by an execute-form instruction.

[label] READ decb name
,type
,[dcb address]
,[area address|'S']
,[length|'S']
,[key address|'S']
,[block address]
,[next address]
,MF=L

334 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 READ

 READ—Execute Form
A remote data management parameter list (data event control block) is used in, and
can be modified by, the execute form of the READ macro. The data event control
block can be generated by the list form of either a READ or WRITE macro.

The description of the standard form of the READ macro explains the function of
each parameter. The description of the standard form also indicates the parameters
used for each access method and the meaning of 'S' when coded for the area
address, length, and key address parameters. For each access method, 'S' can
be coded only for those parameters for which it can be coded in the standard form
of the macro. The format description below indicates the optional and required
parameters in the execute form only.

If your program executes in 31-bit mode, the execute form of READ may be issued
above or below the 16MB line.

The execute form of the READ macro is:

decb address—RX-Type Address or (1-12). This must reside below the 16MB line.

type—code one of the types shown in the standard form

dcb address—RX-Type Address or (2-12)

area address—RX-Type Address, (2-12), or 'S'

length—symbol, decimal digit, absexp, (2-12), or 'S'

key address—RX-Type Address, (2-12), or 'S'

block address—RX-Type Address, or (2-12)

next address—RX-Type Address or (2-12)

MF=E
specifies that the execute form of the READ macro is used, and that an
existing data event control block (specified in the decb address) is used by the
access method.

[label] READ decb address
,type
,[dcb address]
,[area address|'S']
,[length|'S']
,[key address|'S']
,[block address]
,[next address]
,MF=E

 Chapter 7. Non-VSAM Macro Descriptions 335

 RELEX

RELEX—Release Exclusive Control (BDAM)
Use of the RELEX macro is not recommended because it uses the
device-dependent access method BDAM. We recommend you use BSAM, BPAM,
or QSAM instead.

The RELEX macro releases a data block from exclusive control. The block must
have been requested in an earlier READ macro that specified either DIX or DKX.

Note: You can also use a WRITE macro that specifies either DIX or DKX to
release exclusive control.

The RELEX macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

When the RELEX macro is issued in 31-bit addressing mode, the caller must
ensure that the address of the input block reference field is a valid 31-bit address. It
may reside above or below the line.

The format of the RELEX macro is:

D specifies direct access.

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for a direct data set opened for
processing. The parameter must specify the same data control block
designated in the associated READ macro.

block address—RX-Type Address, (2-12), or (0)
specifies the address of the area containing the relative block address, relative
track address, or actual device address of the data block being released. The
parameter must specify the same area designated in the block address of the
associated READ macro.

[label] RELEX D
,dcb address
,block address

RELEX Completion Codes
When the system returns control to the problem program, the low-order byte of
register 15 contains one of the following return codes. The 3 high-order bytes of
register 15 are set to 0.

The RELEX return codes are:

Return Code (15) Meaning

00 (X'00') Operation completed successfully.

04 (X'04') The specified data block was not in the exclusive control
list.

08 (X'08') The relative track address, relative block address, or actual
device address was not in the data set.

336 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETL

RELSE—Release an Input Buffer (QISAM and QSAM Input)
The RELSE macro immediately releases the current input buffer. The next GET
macro retrieves the first record from the next input buffer. For variable-length
spanned records (QSAM), the input data set is spaced to the next segment that
starts a logical record in a following block. Thus, one or more blocks of data or
records might be skipped. The RELSE macro is ignored if a buffer has just been
completed or released, if the records are unblocked, if it is issued for a SYSIN data
set, or if it is issued for an HFS file.

You can issue RELSE for QSAM in 24-bit mode or in 31-bit mode, but QISAM
requires 24-bit mode.

The format of the RELSE macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the opened input data set.
When issued in 31-bit addressing mode, the input DCB address must be a
clean 31-bit address.

[label] RELSE dcb address

SETL—Set Lower Limit of Sequential Retrieval (QISAM Input)
Use of the SETL macro is not recommended because it is a QISAM macro; we
recommend you use VSAM instead. The SETL macro is supported on
SMS-managed volumes only when using the compatibility interface for VSAM.

The SETL macro causes the control program to start processing the next input
request at the specified record or device address. Sequential retrieval of records
using the GET macro continues from that point until the end of the data set is
reached, or a CLOSE or ESETL macro is issued. You must issue an ESETL macro
between SETL macros that specify the same data set.

The SETL macro can specify that retrieval is to start at the beginning of the data
set, at a specific address on the device, at a specific record, or at the first record of
a specific class of records. For additional information on SETL functions, see
DFSMS/MVS Using Data Sets.

The format of the SETL macro is:

[label] SETL dcb address
{,K[H], lower limit address}
{,KC, lower limit address}
{,KD[H], lower limit address}
{,KCD, lower limit address}
{,I,lower limit address}
{,ID,lower limit address}
{,B}
{,BD}

 Chapter 7. Non-VSAM Macro Descriptions 337

 SETL

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block opened for the indexed
sequential data set being processed.

The following parameters are coded as shown; they specify the starting point and
type of retrieval:

K specifies that the next input operation begins at the record containing the key
specified in the lower limit address.

KC
specifies that the next input operation begins at the first record of the key class
specified in the lower limit address. If the first record of the specified key class
has been deleted, retrieval begins at the next non-deleted record regardless of
key class.

H used with either K or KD, specifies that, if the key in the lower limit address is
not in the data set, retrieval begins at the next higher key. The character H
cannot be coded with the key class parameters (KC and KCD).

KD
specifies that the next input operation begins at the record containing the key
specified in the lower limit address, but only the data portion of the record is
retrieved. This parameter is valid only for unblocked records.

KCD
specifies that the next input operation begins at the first record of the key class
specified in the lower limit address, but only the data portion of the record is
retrieved. This parameter is valid only for unblocked records.

I specifies that the next input operation begins with the record at the actual
device address specified in the lower limit address.

ID specifies that the next input operation begins with the record at the actual
device address specified in the lower limit address, but only the data portion of
the record is retrieved. This parameter is valid only for unblocked records.

B specifies that the next input operation begins with the first record in the data
set.

BD
specifies that the next input operation begins with the first record in the data
set, but only the data portion is retrieved. This parameter is valid only for
unblocked records.

lower limit address—RX-Type Address, (2-12), or (0)
specifies the address of the area containing the key, key class, or actual device
address that designates the starting point for the next input operation. If I or ID
is specified, the addressed area must contain the actual device address (in the
form MBBCCHHR) of a prime data record; the other types require that the key
or key class be contained in the addressed area.

338 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

 SETL Exit
The error analysis (SYNAD) routine is given control if the operation could not
complete successfully. For information on how the exception condition code and
general registers are set, see DFSMS/MVS Using Data Sets. If the SETL macro is
not reissued, retrieval starts at the beginning of the data set.

SETPRT—Printer Setup (BSAM, QSAM, and EXCP)

3800 Printers and SYSOUT Data Sets
The SETPRT macro is used to initially set or dynamically change the printer control
information for the IBM 3800 Printing Subsystem and SYSOUT data sets. You can
use SETPRT with any 3800 model printer allocated to the program (not to JES).
You can also use SETPRT when creating SYSOUT data sets. The SYSOUT data
set does not have to be directed to an IBM 3800 Subsystem or a printer. You can
change the following control information with the SETPRT macro:

� Bursting of forms (BURST parameter).
� Character arrangements to be used (CHARS parameter).
� The number of copies (COPIES parameter).
� The starting copy number (COPYNR parameter).
� Vertical formatting of a page (FCB parameter).
� Flashing of forms (FLASH parameter).
� Initializing the printer control information (INIT parameter).
� Modification of copy (MODIFY parameter).
� Blocking or unblocking of data checks (OPTCD parameter).

Besides changing the control information, you can:

� Supply your own 3800 load modules in a partitioned data set to replace the use
of SYS1.IMAGELIB (LIBDCB parameter).

� SETPRT error messages that are sent to the printer can also be passed back
to the invoking program (MSGAREA parameter).

� Print or suppress error messages on the directly allocated printer (PRTMSG
parameter).

� Control the scheduling of SYSOUT segment printing (DISP parameter).

To use all-points addressability when operating the 3800 Model 3, 6, or 8,
SYS1.FDEFLIB, SYS1.PDEFLIB) are used instead of SYS1.IMAGELIB. For
additional information on how to use the SETPRT macro with the IBM 3800 Model
3, 6, or 8, see IBM 3800 Printing Subsystem Models 3 and 8 Programmer’s Guide.

 Non-3800 Printers
For printers other than the IBM 3800 Printing Subsystem, SETPRT controls the
following:

� Selection and verification of UCS and FCB images (UCS and FCB parameters).

� Blocking or unblocking of data checks (OPTCD parameter).

� Printing lowercase EBCDIC characters in uppercase (OPTCD and UCS
parameters).

� Bypassing automatic forms positioning.

 Chapter 7. Non-VSAM Macro Descriptions 339

 SETPRT

The SETPRT macro automatically positions forms in the printer to the first line of a
new page when a new FCB is requested. If you wish to position the form yourself,
specify the N option of the FCB parameter and insert the new form, matching the
top of its page to the same position as the old form occupied.

This is how the SETPRT macro aligns a new form: If the FCB is different from the
one currently in the printer, the old FCB and its current position is read from the
printer. If the old form is not already at the top of a page, a temporary FCB is
constructed and loaded back into the printer. A skip to 1 command is then executed
to move the old form to the top of a new page. The requested FCB is then loaded
into the printer. SETPRT's preparation is now complete. The new FCB and the old
form are now at the first line of a new page. Printing is ready to start. If you wish to
bypass automatic forms positioning, use the N option of the FCB parameter.

 4248 Printers
For the 4248 printer, the SETPRT macro controls following information:

� Activate, deactivate, and position horizontal copy (COPYP parameter).
� Speed of the printer (PSPEED parameter).

All Supported Devices
You can issue the SETPRT macro in 24-bit mode or 31-bit mode, but the standard
and list forms and all modules to which the parameter list points must reside below
the line.

Note: When processing a DCB which specifies QSAM locate mode and the
buffers are above the 16MB line (DCBE RMODE31=BUFF is specified),
SETPRT should be issued in 31-bit mode.

When BSAM is used, all write operations must be checked for completion before
the SETPRT macro is issued. Otherwise, an incomplete write operation might be
purged.

Note: A permanent error on a SETPRT macro causes one or both of the first two
bits of the DCBIFLGS field to be set on. A cancel key or a paper jam that
requires a printer subsystem-restart sets in the DCBIFLGS field the lost
data-indicator bit, DCBIFLDT. Before reissuing a SETPRT macro, you must
reset these bits to zero.

 Unsupported Devices
Issuing the SETPRT macro for a device other than a SYSOUT data set, a UCS
printer, or the IBM 3800 Printing Subsystem results in an error return code.

The standard form of the SETPRT macro is as follows (the list and execute forms
are shown following the standard form):

340 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

dcbaddr—A-Type Address or (2-12)
specifies the address of the data control block for the data set to be printed.
The data set must be opened for output before the SETPRT macro is issued.

BURST={N|Y}
specifies whether the paper output is to be burst. BURST=Y indicates that the
printed output is to be burst into separate sheets and stacked. BURST=N
indicates that the printed output is to go into the continuous forms stacker. If
BURST is not specified, the SETPRT routine assumes BURST=N. If bursting is
requested, the printed output is threaded into the burster-trimmer-stacker.
Otherwise, the printed output is threaded into the continuous forms stacker.
The parameter prints a message at the system console telling the operator to
thread the paper again if needed.

Note: This parameter is effective for the IBM 3800 printer only.

CHARS={name|A(address)|R(register)}
{({name|A(address)|R(register)},...)}

specifies one to four character arrangement tables to be used when printing a
data set.

Note: This parameter is effective for the IBM 3800 printer only.

name
specifies the last four characters of the 8-byte member name for a
character arrangement table module. See IBM 3800 Printing Subsystem
Programmer’s Guide for information on the modules available.

A(address)
specifies an in-storage address of the user-provided character arrangement
table module. See DFSMS/MVS Utilitiesfor information on the format of the
module.

[label] SETPRT dcbaddr
[,BURST={N |Y}]
[,CHARS={ name|A(address)|R(register)}}
 {({name|A(address)|R(register)},...)}]
[,COPIES=number]
[,COPYNR=number]
[,COPYP={position|0}]
[,DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }]
[,FCB={ imageid|A(address)|R(register)}
 ({imageid|A(address)|R(register)} [,{V|A}[,N]])
[,FLASH={NONE| name}
 {NONE|([name],count)}]
[,INIT={N|Y}]
[,LIBDCB= dcb address]
[,MODIFY={{ name|A(address)|R(register)}
 {({name|A(address)|R(register)},trc)}]
[,MSGAREA= address]
[,OPTCD={B|U}
 {({B|U},{F|U})}]
[,PRTMSG={N|Y}]
[,PSPEED={L|M|H|N}]
[,REXMIT={N|Y}]
[,UCS={csc}
 {(csc,{F|F,V|V})}]

 Chapter 7. Non-VSAM Macro Descriptions 341

 SETPRT

R(register)
specifies the register containing an in-storage address of the user-provided
character arrangement table module. For information on the format of the
module, see DFSMS/MVS Utilities.

COPIES=number
specifies the total number of copies of each page of the data set that is to be
printed (from 1 to 255) before going to the next page. If COPIES is omitted,
one copy of each page is printed.

Note: This parameter is effective for the IBM 3800 printer only.

COPYNR=number
specifies the starting copy number for this transmission. number is a value from
1 to 255. This parameter defaults to a value of 1 if not specified.

Note: This parameter is effective for a directly-allocated IBM 3800 printer only.

COPYP={position|0}
activates or deactivates the horizontal copy feature of the 4248 printer. This
overrides the horizontal copy offset in the specified FCB. (If no FCB is
specified, the horizontal copy offset in the already loaded FCB is overridden.)
COPYP also controls horizontal copy capabilities with 3211 FCBs that are
loaded in a 4248 printer.

position
specifies a decimal number from 2 to 168 indicating the print position where
the horizontal copy starts. If your 4248 printer has only 132 print positions
installed, the maximum number you should specify here is 132. When
horizontal copy is activated, the maximum amount of data that can be sent
to the printer is equal to the size of the smaller of the two copy areas. If
the two copy areas are equal, the maximum amount of data that can be
sent is equal to half the number of print positions.

For example, if you specify COPYP=101 for a 4248 printer with 132 print
positions, the maximum amount of data that can be sent to the printer is 32
bytes. (Thirty-two bytes is equal to the smaller copy area, from position 101
to position 132.) If you specify COPYP=67 for a 4248 printer with 132 print
positions, the maximum amount of data that can be printed is 66 bytes.
(Sixty-six bytes is equal to half the number of print positions.)

If COPYP=position is specified and a 3211 format FCB is being used, the
3211 format FCB is converted to 4248 format FCB and the specified offset
value is inserted.

Note: COPYP=position is not available with the IBM 3262 Model 5 printer.

0 specifies that no horizontal copy is to be made. Any offset value in the
specified or already loaded FCB is overridden.

Note: Channel programs that are used when horizontal copy is activated
must have the suppress length indication (SLI) bit set. See ESA/390
Principles of Operation for information on the SLI bit.

DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }
DISP allows you to control how JES disposes of the data created before the
SETPRT request. This parameter is valid only for SYSOUT data sets and is
ignored for the direct user who issues SETPRT. You can abbreviate the

342 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

parameters to S, N, and E, respectively. This parameter is effective for any
SYSOUT data set.

SCHEDULE
specifies that JES is to schedule the previous data for printing immediately.

NOSCHEDULE
specifies that JES is to separate the data into a separate JES data set and
to schedule the previous data set for printing after the job terminates.

EXTERNAL
specifies that the schedule of the data set for printing is determined by the
JCL parameter FREE=CLOSE. FREE=CLOSE is the same as specifying
DISP=SCHEDULE. The absence of FREE=CLOSE in the JCL is the same
as coding DISP=NOSCHEDULE on the SETPRT macro. EXTERNAL is the
default.

FCB={ imageid|A(address)|R(register)}
({imageid|A(address)|R(register)}[,{V|A}[,N])

specifies that the forms control buffer (FCB) is selected from the image library.
The possible specifications are:

imageid
specifies the forms control image to be loaded. A forms control image is
identified by a 1- to 4-character name. IBM-supplied 3211 format images
are identified by imageid value of STD1 and STD2. User-designed forms
control images are defined by the installation. Note that the 4248 accepts
both 3211 and 4248 format FCBs. For descriptions of the standard forms
control images for the 3203 and 3211, 3262 Model 5 or 4245, see
DFSMS/MVS DFSMSdfp Advanced Services. For a description of the 4248
FCB, see DFSMS/MVS Utilities. For more information about 3800 FCB
modules, see DFSMS/MVS Utilities.

A(address)
specifies an in-storage address of the user-supplied forms control buffer
module to be used. (For information on the format of the module, see
DFSMS/MVS Utilities.)

Note: This subparameter is effective for directly-allocated IBM 3800 Model
1 printers.

R(register)
specifies the register that contains an in-storage address of the
user-provided forms control buffer module to be used when printing a data
set. (For information on the format of the module, see DFSMS/MVS
Utilities.)

Note: This subparameter is effective for directly-allocated IBM 3800 Model
1 printers.

V or VERIFY
requests the forms control image be displayed on the printer for visual
verification. This subparameter allows forms verification and alignment
using the WTOR macro.

A or ALIGN
allows forms alignment using the WTOR macro. This subparameter is
ignored if specified for the IBM 3800 printer.

 Chapter 7. Non-VSAM Macro Descriptions 343

 SETPRT

N bypasses automatic forms positioning. This subparameter is ignored if
specified for the IBM 3800 printer. N is not available via JCL and, thus,
cannot be used when opening a directly-allocated printer because OPEN
obtains printer setup parameters from the JCL.

FLASH={NONE| name}

{NONE|([name],count)}
identifies the forms overlay frame to be used. Unless REXMIT=Y is coded and
the forms overlay frame is still in use from the previous SETPRT macro
issuance, a message tells the operator to insert this forms overlay frame into
the printer. This parameter also lets you specify the number of copies on which
the overlay is to be printed (flashed). If you omit this parameter for a directly
attached printer, flashing stops. If you omit this parameter when doing a
SETPRT while generating SYSOUT data, the FLASH parameters previously in
effect for this data set are used.

Note: This parameter is effective for the IBM 3800 printer only.

NONE
is valid only when using SETPRT while generating SYSOUT data, and
causes zero copies to be flashed. If flashing is resumed in a later SETPRT,
a message is generated by JES regarding the insertion of the forms overlay
frame, even if no change in the forms overlay frame is necessary.

name
specifies the 1- to 4-character name of the forms overlay frame.

count
specifies the total number (0 to 255) of copies of each page of the data set
on which the overlay is to be printed, beginning with the first copy. The
number of copies printed is not greater than the number of copies specified
by COPIES.

For a directly attached printer: No copies are flashed if you specify a
flash count of zero. If you specify a nonzero flash count and omit the name
of the forms overlay frame, the operator is not requested to insert a frame.
Whatever frame is inserted is used.

During the generation of SYSOUT data: If you specify a flash count of
zero, the flash count previously in effect for the data set is used. If you
specify a nonzero flash count and omit the name of the forms overlay
frame, the operator is not requested to insert a frame except when flashing
has stopped. If flashing stops, a message from JES requests the operator
to insert a new frame. Then, the flashing of the forms resumes using the
count specified in the flash count parameter.

INIT={N|Y}
When INIT=Y is specified for a directly-allocated IBM 3800 printer, it initializes
the control information in the printer with a folded character arrangement table:
the 10-pitch Gothic character set (12 pitch for the IBM 3800 Models 3, 6, and
8), and a 6 lines per inch FCB corresponding to the forms size in the printer.
COPIES and COPYNR are initialized to 1, FLASH and MODIFY are cleared,
and BURST is initialized to N (continuous forms).

344 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

When INIT=Y is specified for a SYSOUT data set, other parameters not
specified on the same invocation are reset, meaning the JES default is used.
(“JES default” refers to what was specified when JES was set up.) For INIT=N,
all control information for the IBM 3800 printer remains unchanged. Any
parameters included on the same macro statement as INIT are processed after
printer initialization completes.

Note: This parameter is effective for the IBM 3800 printer only.

LIBDCB= dcb address—A-Type Address or (2-12)
dcb address is the address of an authorized user library DCB that has been
opened, and that you want to use instead of SYS1.IMAGELIB. If LIBDCB is not
specified, SYS1.IMAGELIB is used.

Note: This parameter is effective for directly-allocated IBM 3800 printers.

MODIFY={name|A(address)|R(register)}
{({name|A(address)|R(register)},trc)}

identifies the copy modification module and an associated character
arrangement table module used when modifying the data to be printed.

Note: This parameter is effective for IBM 3800 printers or SYSOUT.

name
specifies the 1- to 4-character name of the copy modification module stored
in SYS1.IMAGELIB. These one to four characters are the fifth to eighth
characters of the 8-byte member name of a copy modification module in
SYS1.IMAGELIB.

A(address)
specifies an in-storage address of the user-supplied copy modification
module. For information on the format of the module, see DFSMS/MVS
Utilities.

Note: This subparameter is effective for the IBM 3800 Model 1 printer.

R(register)
specifies the register containing an in-storage address of the user-provided
copy modification module. For information on the format of the module, see
DFSMS/MVS Utilities. This subparameter is effective for the IBM 3800
Model 1 printer.

trc specifies the table reference character used to select one of the character
arrangement table modules to be used for the copy modification text. The
values of 0, 1, 2, and 3 correspond to the order in which the module names
are specified in CHARS. If trc is not included, the first character
arrangement table module (0) is assumed.

MSGAREA=address—A-Type Address or (2-12)
address is the address of the message feedback area. This area is used to
transfer message text between the SETPRT macro and the caller. You must
allow at least 80 bytes for the message text plus 10 bytes for prefix information
or a total length of at least 95 bytes. The message is truncated if it does not fit
into the area. This area resides below the 16MB line.

Note: This parameter is effective for the IBM 3800 printer only.

The following shows the layout of the message area:

bytes 0-1: total length

 Chapter 7. Non-VSAM Macro Descriptions 345

 SETPRT

bytes 2-5: reserved
bytes 6-7: text length
bytes 8-9: reserved
bytes 10-variable: message text

OPTCD={B|U}
 {({B|U},{F|U})}

specifies whether printer data checks are blocked or unblocked and if the
printer is to operate in fold or normal mode. You can specify:

B specifies that printer data checks are blocked. This option updates the
DCBOPTCD field of the data control block.

U specifies that printer data checks are unblocked. This option updates the
DCBOPTCD field of the data control block.

FOLD or F
specifies that printing is in fold mode. This subparameter is ignored if
specified for the IBM 1403 or IBM 3800 printer. For 1403 fold mode, use
FOLD option under the UCS parameter.

UNFOLD or U
specifies that printing is in normal mode. This subparameter causes fold
mode to revert to normal mode. This subparameter is ignored if specified
for the IBM 1403 or IBM 3800 printer. Because UCS processing occurs
after OPTCD processing, if FOLD is specified in the UCS parameter, fold
mode is set. If FOLD is not coded, unfold is set.

PRTMSG={N|Y}
allows printing of printer error messages for the programmer on the IBM 3800.
This parameter is effective for the 3800 only.

N specifies not to print error messages on the IBM 3800.

Y specifies to print error messages on the IBM 3800. Y is the default.

PSPEED={L|M|H|N}
specifies the printer's speed, which affects print quality. This parameter is
effective for the 4248 printer only, and is ignored for all other printers. LOW
speed produces the best quality. PSPEED is used to set the printer's speed or
override that set in the FCB. If no FCB is specified, the PSPEED parameter, if
any, in the already loaded FCB is used.

L or LOW
sets the printer speed to 2200 lines per minute.

M or MEDIUM
sets the printer speed to 3000 lines per minute.

H or HIGH
sets the printer speed to 3600 lines per minute.

N or NOCHANGE
indicates that the speed at which the printer is currently running is to
remain the same no matter what is specified in the requested FCB, or if
none is specified, in the already loaded FCB.

Actual printer speed can vary. See IBM 4248 Printer Model 1 Description for
information on determining the exact printer speed.

346 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

REXMIT={N|Y}
specify REXMIT=Y to modify the starting copy number (COPYNR), the number
of copies of the pages in a data set to be printed (COPIES), the forms overlay
frame to be used (FLASH), and the number of copies to be printed (FLASH)
without changing the other control information already set up in the printer.
The SETPRT SVC ignores all other parameters in the parameter list.

UCS={csc}
 {(csc,{F|F,V|V})}

specifies the character set image to be used. This parameter is ignored if
specified for the IBM 3800 printer. You can specify:

csc (character set code)
specifies the character set selected. A character set is identified by a 1- to
4-character code. Codes for standard IBM character sets are as follows:

1403 or 3203 Printer: AN, HN, PCAN, PCHN, PN, QN, QNC, RN, SN, TN,
XN, and YN

3211 Printer: A11, H11, G11, P11, and T11

4245 Printer: AN21, AN31, HN21, HN31, PL21, PL31, GN21, RN21, RN31,
TN21, SN21, FC21, KA21, and KA22

4248 Printer: 40E1, 40E2, 4101, 4102, 4121, 4122, 41C1, 41C2, 4181,
4201, 4061, 40C1, 4161, 4041, and 4042

Note: There are no standard IBM character sets supplied for the IBM
3262 Model 5 printer.

The 4245 and 4248 printers load their own images on recognition of the
mounted band. The image table provides a correspondence between the
band identification and the character set code.

See DFSMS/MVS DFSMSdfp Advanced Services for a description of the
4245 and 4248 UCS image tables and information on adding user-defined
entries to an image table.

FOLD or F
specifies the character set image selected be in fold mode. The fold mode
converts the EBCDIC code for lowercase characters to the EBCDIC code
for the corresponding uppercase characters. Unless FOLD is specified,
UNFOLD mode is set.

V or VERIFY
requests the character set image be displayed on the printer for visual
verification.

SETPRT Return Codes
After the SETPRT macro is executed, a return code is placed in register 15, and
control is returned to the instruction following the SETPRT macro. The illustration
below shows how the 4 bytes of register 15 are used for a specific printer.

 Chapter 7. Non-VSAM Macro Descriptions 347

 SETPRT

Byte ð 1 2 3
 ┌───────────┬───────────┬───────────┬───────────┐

│ │ 38ðð Code │ │ │
│ Unused │ Other than│ FCB Code │ UCS Code │
│ │ FCB │ │ │

 └───────────┴───────────┴───────────┴───────────┘
Bit ð 7 8 15 16 23 24 31

Return codes X'0' through X'24' apply to all printers.

Return codes X'28' through X'4C' apply to the 3800 printer only. There is one
exception; return code X'48' also applies to the IBM 3262 Model 5 and the IBM
4248 printer.

Return code X'50' applies to SYSOUT data sets.

Return Codes 0 to 14
Figure 43 shows the hexadecimal return codes X'00' through X'14' for specific
printers.

Figure 43 (Page 1 of 2). SETPRT Return Codes 00 to 14

3800 Code
Other than FCB
(Byte 1)

FCB Code
(Byte 2)

UCS Code
(Byte 3) Meaning

00 00 00 Successful completion.

00 00 04 The operator canceled the UCS request for one of the
following reasons:

� The UCS image could not be found in SYS1.IMAGELIB.
� The requested train or band was not available.

00 04 00 For non-3800 printers, the operator canceled the FCB load
operation for one of the following reasons:

� The form could not be aligned to match the buffer.
� The FCB module could not be found in SYS1.IMAGELIB

or your DCB exit list.

For a 3800, the specified FCB module could not be found in
SYS1.IMAGELIB, a user library, or the DCB exit list, and
SETPRT processing was terminated.

04 00 00 The 3800 SETPRT processing was suspended for one of the
following reasons:

� A character arrangement table module could not be
found in SYS1.IMAGELIB or a user library.

� A copy modification module could not be found in
SYS1.IMAGELIB or a user library.

� A graphic character modification module (required by a
character arrangement table module) could not be found
in SYS1.IMAGELIB or a user library.

� A library character set module could not be found in
SYS1.IMAGELIB or a user library.

Register 0 contains a reason code identifying which of the
above conditions occurred. For an explanation, see
Figure 45 on page 351.

348 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

Figure 43 (Page 2 of 2). SETPRT Return Codes 00 to 14

3800 Code
Other than FCB
(Byte 1)

FCB Code
(Byte 2)

UCS Code
(Byte 3) Meaning

00 00 08 A permanent I/O error was detected when the BLDL macro
was issued to locate a UCS image or image table in
SYS1.IMAGELIB.

00 08 00 A permanent I/O error was detected when the BLDL macro
was issued to locate an FCB module in SYS1.IMAGELIB or a
user library.

08 00 00 A permanent I/O error was detected when the BLDL macro
was issued to locate one of the following modules in
SYS1.IMAGELIB or a user library.

� A character arrangement table module.
� A copy modification module.
� A graphic character modification module.
� A library character set module.

Register 0 contains a reason code identifying which of the
above conditions occurred. For an explanation, see
Figure 45 on page 351.

00 00 0C A permanent I/O error was detected while loading the
printer's UCS buffer, or displaying a message on the 4248
printer.

00 0C 00 A permanent I/O error was detected during forms positioning
or while loading the printer's FCB buffer.

Register 0 contains a reason code identifying which of the
above conditions occurred. For an explanation, see
Figure 49 on page 353.

0C 00 00 A permanent I/O error was detected while loading one of the
following:

� Character arrangement table.
� Copy modification record.
� Starting copy number.
� Graphic character modification record.
� Forms overlay sequence control record (copy counts and

flash counts).
� Writable character generation module (WCGM).
� Library character set.

Register 0 contains a reason code identifying which of the
above conditions occurred. For an explanation, see
Figure 45 on page 351.

00 00 10 A permanent I/O error was detected during UCS verification
display or while reading the UCS buffer.

00 10 00 A permanent I/O error was detected during FCB verification
display.

00 00 14 The operator canceled the UCS request because an
improper character set image was displayed for visual
verification.

00 14 00 The operator canceled the FCB request because an improper
forms control image was displayed for visual verification.

The illustration below shows how the 4 bytes of register 15 are used for all printers.

 Chapter 7. Non-VSAM Macro Descriptions 349

 SETPRT

Byte ð 1 2 3
 ┌───────────┬───────────┬───────────┬───────────┐

│ Unused │ Unused │ Unused │ General │
│ │ │ │ Code │

 └───────────┴───────────┴───────────┴───────────┘
Bit ð 7 8 15 16 23 24 31

Return Codes 18 to 50
Figure 44 shows the return codes X'18' through X'50' for all printers.

Figure 44 (Page 1 of 2). SETPRT Return Codes 18 to 50

Return Code
(Byte 3) Meaning

X'18' No operation was performed for one of the following reasons:

� The data control block was not open.
� The data control block was not valid for a sequential data set.
� The SETPRT parameter list was not valid.
� The output device was not a UCS or 3800 printer or SYSOUT.
� SETPRT was issued to an HFS file.

X'1C' No operation was performed because an uncorrectable error occurred in a previously initiated output
operation. The error analysis (SYNAD) routine is entered when the next PUT or CHECK macro is
issued.

No operation was performed because an uncorrectable error occurred when the block data check or
the reset block data check command was issued by SETPRT. For a 4245, a possible lost data
condition was detected.

For a 3800, message IEC173I indicates which of the above errors has occurred.

Register 0 contains a reason code identifying whether data was lost.

X'20' Not enough storage was available for opening the SYS1.IMAGELIB, or, for a 3800 printer, not
enough storage was available to contain the control blocks for a user library, or insufficient storage
was available for SETPRT.

X'24' SYS1.IMAGELIB (or, for the 3800 printer, a user library) cannot be opened to load the specified
module. Either:

� a permanent I/O error occurred
� SYS1.IMAGELIB was mounted or cataloged incorrectly,
� SYS1.IMAGELIB is an alias for a data set for which you do not have RACF read authority.

X'28' The operator canceled the forms overlay request.

X'2C' The operator canceled the paper threading request.

X'30' More writable character generation modules (WCGMs) were requested than there are writable
buffers installed on the printer.

X'34' There was an invalid table reference character for copy modification module.

X'38' An error occurred when attempting to execute the initialize printer command.

X'3C' Bursting was requested but the burster-trimmer-stacker feature is not installed on the printer.

X'40' A permanent I/O error occurred while executing a sense, final select character arrangement table
command, or display status code.

X'44' The translate table character arrangement table entry references a character set that is not in the
image library.

350 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Figure 44 (Page 2 of 2). SETPRT Return Codes 18 to 50

Return Code
(Byte 3) Meaning

X'48' Data was lost because of one of the following (3800 only):

� 3800 system restart after a paper jam.
 � Cancel key.
� Lost resources after paper jam.

For a 4248, a possible lost data condition was detected.

Register 0 contains a reason code identifying which of the above conditions occurred. See
Figure 47 on page 352 for an explanation.

X'4C' A load check was detected while loading one of the following (3800 only):

� Forms control buffer (FCB).
� Character arrangement table (CAT).
� Graphic arrangement table (GCM).
� Copy modification record.
� Writable character generation module (WCGM).
� Library character set (LCS).

Register 0 contains a reason code identifying which of the above conditions occurred. For an
explanation, see Figure 45 on page 351.

X'50' When a SETPRT was issued to a direct attach (an online 3800 Model 3, 6 or 8 printer) or a
SYSOUT data set, there was a failure in one of the following:

� OPEN or CLOSE.
� Data set segmentation.
� Processing of system control blocks.
� Obtaining exclusive control.
� More than one DCB is open for the SYSOUT data set.

For an explanation of the reason codes associated with return code 50, see Figure 48 on
page 352.

SETPRT Reason Codes

All 3800 Printers
The following illustration shows the contents of register 0, which includes the GCM
ID, the CAT ID, and the reason code.

Byte ð 1 2 3
 ┌───────────┬───────────┬───────────┬───────────┐
 │ Unused │ GCM ID │ CAT ID │ Reason │

│ │ │ │ Code │
 └───────────┴───────────┴───────────┴───────────┘
Bit ð 7 8 15 16 23 24 31

Figure 45 shows the hexadecimal reason codes for the IBM 3800 Model 1 and the
other 3800 models in compatibility mode. These reason codes, returned in register
0, are in addition to return codes X'04', X'08', X'0C', and X'4C' returned in
register 15.

 Chapter 7. Non-VSAM Macro Descriptions 351

Figure 45. Reason Codes for IBM 3800 Printers (for Return Codes 04, 08, 0C, 4C)

GCM ID (Byte
1)

CAT ID
(Byte 2)

Reason
Code
(Byte 3) Meaning

00 01-04 04 Character arrangement table module/record.

00 00 08 Copy modification module/record.

00 00 0C Starting copy number.

01-04 01-04 10 Graphic character modification module/record.

00 00 14 Forms overlay sequence control record.

00 00 18 Library character set.

00 00 1C Writable character generation module (WCGM).

00 00 20 Forms control buffer module.

3800 Printers and the 4245 Printer
These reason codes apply to all 3800 printers and the IBM 4245 printer. Return
code X'1C' returned in register 15. The reason code is placed in byte 3 of register
0.

Figure 47 shows the reason codes in addition to return code X'48' returned in
register 15. The reason code is placed in byte 3 of register 0.

Figure 48 shows the reason codes in addition to return code X'50' returned in
register 15. The reason code is placed in byte 3 of register 0.

Figure 46. Reason Codes for All Printers (for Return Code 1C)

Reason Code
(Byte 3) Meaning

X'00' Indicates no data lost.

X'04' Indicates data has been lost.

Figure 47. Reason Codes for 3800 Printers and 4248 Printer (for Return Code 48)

Reason Code
(Byte 3) Meaning

X'04' A paper jam caused a restart. A possible lost data condition was
detected.

X'08' The cancel key was pressed.

X'0C' Resources were lost after a paper jam.

Figure 48 (Page 1 of 2). Reason Codes for Return Code 50

Reason Code
(Byte 3) Meaning

X'04' An invalid SETPRT request for a SYSOUT data segment was specified. An in-storage address
was used for a copy modification, character arrangement table, FCB, or user library DCB. Only
load module IDs in SYS1.IMAGELIB are allowed for SYSOUT setup.

352 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

Figure 48 (Page 2 of 2). Reason Codes for Return Code 50

Reason Code
(Byte 3) Meaning

X'08' During SETPRT processing for a SYSOUT data segment, an error was detected while attempting
to read a JFCB or JFCBE control block from SWA.

X'0C' During SETPRT processing for a SYSOUT data segment, an error was detected while invoking
the CLOSE subsystem interface (SSI) for the previous data segment.

X'10' During SETPRT processing for a SYSOUT data segment, an error was detected while invoking
the OPEN subsystem interface (SSI) for the new data segment being created.

X'14' During SETPRT processing for a SYSOUT data segment, an error was detected while the
scheduler spool file allocation routine was segmenting the data set.

X'18' An ENQ macro failed. The ENQ was issued by SETPRT processing.

X'1C' More than one DCB is open for the SYSOUT data set.

All Non-3800 Printers
Figure 49 shows the reason code in addition to completion code 0C00.

Figure 49. Reason Codes for Non-3800 Printers (for Completion Code 0C00)

Reason Code
(Byte 3) Meaning

X'00' The I/O error was not caused by a load check.

X'04' FCB load failed because of a load check. Probably caused by invalid
FCB contents.

 SETPRT—List Form
The list form of the SETPRT macro is used to construct a data management
parameter list. The description of the standard form of the SETPRT macro explains
the function of each parameter. The dcbaddr must appear in the list or execute
form of the SETPRT macro.

The parameter list must reside below the 16MB line.

The list form of the SETPRT macro is as follows:

 Chapter 7. Non-VSAM Macro Descriptions 353

 SETPRT

dcbaddr—A-Type Address

BURST={N|Y}
is coded as shown in the standard form of the macro.

CHARS={name}
{(name,...)}

is coded as shown in the standard form of the macro, except for the A(address)
andR(register) parameters, which cannot be specified.

COPIES=number
is coded as shown in the standard form of the macro.

COPYNR=number
is coded as shown in the standard form of the macro.

COPYP={position|0}
is coded as shown in the standard form of the macro.

DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }
is coded as shown in the standard form of the macro.

FCB={ imageid}
(imageid,{V|A}[,N])

is coded as shown in the standard form of the macro, except for the A(address)
andR(register) parameters, which cannot be specified.

FLASH={NONE| name}
{([name],count)}

is coded as shown in the standard form of the macro.

[label] SETPRT [dcbaddr]
[,BURST={N |Y}]
[,CHARS={[name}
 {(name,...)}]
[,COPIES=number]
[,COPYNR=number]
[,COPYP={position|0}]
[,DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }]
[,FCB={ imageid}
 (imageid,{V|A}[,N])
[,FLASH={NONE| name}
 {NONE|([name],count)}]
[,INIT={N|Y}]
[,LIBDCB= dcb address]
[,MODIFY={name}
 {(name,trc)}]
[,MSGAREA= address]
[,OPTCD={B|U}
 {({B|U},{F|U})}]
[,PRTMSG={N|Y}]
[,PSPEED={L|M|H|N}]
[,REXMIT={N|Y}]
[,UCS={csc}
 {(csc,{F|F,V|V})}]
,MF=L

354 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

INIT={N|Y}
is coded as shown in the standard form of the macro.

LIBDCB= dcb address—RX-Type Address or (2-12)
is coded as shown in the standard form of the macro.

MODIFY={name}
{(name,trc)}

is coded as shown in the standard form of the macro, except for the A(address)
andR(register) parameters, which cannot be specified.

MSGAREA=address—RX-Type Address or (2-12)
is coded as shown in the standard form of the macro.

OPTCD={B|U}
{({B|U},{F|U})}

is coded as shown in the standard form of the macro.

PRTMSG={N|Y}
is coded as shown in the standard form of the macro.

PSPEED={L|M|H|N}
is coded as shown in the standard form of the macro.

REXMIT={N|Y}
is coded as shown in the standard form of the macro.

UCS={csc}
{(csc,{F|F,V|V})}

is coded as shown in the standard form of the macro.

MF=L
specifies that the list form of the macro is used to create a parameter list that
can be referred to by an execute form of the SETPRT macro.

 SETPRT—Execute Form
A remote data management parameter list is referred to, and can be modified by,
the execute form of the SETPRT macro.

The description of the standard form of the SETPRT macro explains the function of
each parameter. The dcbaddr must be specified in the list or execute form of the
SETPRT macro.

The execute form of the SETPRT macro is as follows:

 Chapter 7. Non-VSAM Macro Descriptions 355

 SETPRT

dcbaddr—RX-Type Address or (2-12)

BURST={N|Y|*}
is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When BURST=* is coded, the BURST field in the
parameter list remains as previously set. This parameter is effective for the IBM
3800 printer only.

CHARS={name|A(address)|R(register)}
 {({name|A(address)|R(register)},...)}
 {*}

is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When CHARS=* is coded, the CHARS field in the
parameter list remains as previously set.

COPIES={number|*}
is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When COPIES=* is coded, the COPIES field in the
parameter list remains as previously set.

COPYNR={number|*}
is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute

[label] SETPRT [dcbaddr]
[,BURST={N |Y|*}]
[,CHARS={ name|A(address)|R(register)}
 {({name|A(address)|R(register)},...)}
 {*}]
[,COPIES={number|*}]
[,COPYNR={number|*}]
[,COPYP={position|0}]
[,DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }]
[,FCB={ imageid|A(address)|R(register)}
 ({imageid|A(address)|R(register)[,{V|A} [,N]])
 {*}]
[,FLASH={NONE| name}
 {([NONE|name],count)}
 {*}]
[,INIT={N|Y}]
[,LIBDCB= dcb address]
[,MODIFY={name|A(address)|R(register)*}
 {({name|A(address)|R(register)},trc)}
 {*}]
[,MSGAREA= address]
[,OPTCD={B|U}
 {({B|U},{F|U})}]
[,PRTMSG={N|Y}]
[,PSPEED={L|M|H|N}]
[,REXMIT={N|Y|*}]
[,UCS={csc}
 {(csc,{F|F,V|V})}]
,MF=(E,data management list address)

356 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SETPRT

form of the SETPRT macro. When COPYNR=* is coded, the COPYNR field in
the parameter list remains as previously set.

COPYP={position|0}
is coded as shown in the standard form of the macro.

DISP={SCHEDULE|NOSCHEDULE|EXTERNAL }
is coded as shown in the standard form of the macro.

FCB={ imageid|A(address)|R(register)}
 ({imageid|A(address)|R(register)}[,{V|A}[,N])
 {*}

is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When FCB=* is coded, the FCB field in the
parameter list remains as previously set.

FLASH={NONE| name}
 {NONE|([name],count)}
 {*}

is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When FLASH=* is coded, the FLASH field in the
parameter list remains as previously set.

INIT={N|Y}
is coded as shown in the standard form of the macro. When INIT=Y is specified
on the execute form of the SETPRT macro, all 3800 fields in the parameter list
(BURST, CHARS, COPIES, COPYNR, FCB, FLASH, MODIFY, and REXMIT)
are reset to binary zeros unless a specified field is preserved by coding
keyword parameter=* or changed by specifying a valid subparameter for the
keyword parameter as described in the standard form of the macro.

LIBDCB= dcb address—A-Type Address or (2-12)
is coded as shown in the standard form of the macro.

MODIFY={name|A(address)|R(register)}
 {({name|A(address)|R(register)},trc)}
 {*}

is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When MODIFY=* is coded, the MODIFY field in
the parameter list remains as previously set.

MSGAREA=address—A-Type Address or (2-12)
is coded as shown in the standard form of the macro.

OPTCD={B|U}
 {({B|U},{F|U})}

is coded as shown in the standard form of the macro.

PRTMSG={N|Y}
is coded as shown in the standard form of the macro.

PSPEED={L|M|H|N}
is coded as shown in the standard form of the macro.

 Chapter 7. Non-VSAM Macro Descriptions 357

 STOW

REXMIT={N|Y|*}
is coded as shown in the standard form of the macro, except for the *
subparameter, which can be used only when INIT=Y is specified in the execute
form of the SETPRT macro. When REXMIT=* is coded, the REXMIT field in the
parameter list remains as previously set.

UCS={csc}
{(csc,{F|F,V|V})}

is coded as shown in the standard form of the macro.

MF=(E,data management list address)
specifies that the execute form of the SETPRT macro is used, and an existing
data management parameter list is used.

E

data management list address—RX-Type Address, (2-12), or (1).

STOW—Update Partitioned Data Set Directory (BPAM)
The STOW macro updates a partitioned data set directory or PDSE directory by
adding, changing, replacing, or deleting an entry in the directory. You can also use
the STOW macro to clear a PDSE directory. You can update only one entry at a
time using the STOW macro. If the data set is open for output and the entry to be
added is a member name (not an alias), the system writes an end-of-data indication
following the member. If the data set is open for update, the entry to be replaced is
updated in the directory; no end-of-file record is written. You must position to the
member using the POINT or FIND macro before issuing the STOW macro. All
input/output operations using the same data control block must be tested for
completion.

You can use the STOW macro only when the data set is opened for OUTPUT,
UPDAT, or OUTIN. See DFSMS/MVS Using Data Sets for more information on
using the STOW macros with a partitioned data set.

For PDSEs, the STOW macro synchronizes data to DASD.

For load module PDSEs, only the Change, Delete, and Initialize functions may be
used. The Add and Replace functions cannot be specified for load module PDSEs.

The STOW macro may also be used to disconnect members of a PDSE. (Member
connections are established by the OPEN, BLDL, FIND, and POINT macros, see
DFSMS/MVS Using Data Sets for information on PDSE connections.) This action is
indicated by the DISC directory action. If the DISC directory action is specified, the
DCB may be open for INPUT, OUTPUT, UPDAT, or OUTIN.

All addresses for the STOW must be 24-bit addresses.

The format of the STOW macro is:

[label] STOW dcb address
,list address
[,directory action]

358 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 STOW

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the open DCB which caused the connections to be
established.

Note: The DCB may be open for input.

list address—RX-Type Address, (2-12), or (0)
specifies the address of the area containing the information required by the
system to maintain the partitioned data set directory. The size and format of the
area depend on the directory action requested as follows:

Adding or Replacing a Directory Entry: The list address must specify an
area at least 12 bytes long and beginning on a halfword boundary. The
following illustration shows the format of the area:

 Chapter 7. Non-VSAM Macro Descriptions 359

 STOW

List Address
 │
 6
 ├──────────┬────┬───┬───┬──────────────┐

│ NAME │ TT │ R │ C │ USER DATA │
 └──────────┴────┴───┴───┴──────────────┘
Length 8 2 1 1 ð to 62
Bytes

NAME: Specifies the member name or alias being added or replaced. The name must
begin in the first byte of the field and be padded on the right with blanks, if
necessary, to complete the 8-byte field.

TT: Specifies the relative track number where the beginning of the member is located.

R: Specifies the relative block (record) number on the track identified by TT.

Note: The TTR fields shown above must be supplied by the problem program if
an alias is being added or replaced (alias bit is 1). For a PDSE, the TTR
field is a token that does not represent the physical location of the
member in the data set. For a PDSE, the TTR in an alias directory entry
must be the starting TTR of a member already in the directory. Alias
directory entries in a PDSE must point to the beginning of a member.

The system supplies the TTR fields when a member name is being added or
replaced. Issue the FIND macro to locate the member before using STOW to
replace it.

C: Specifies the type of entry (member or alias) for the name, the number of note list
fields (TTRNs), and the length in halfwords, of the user data field. The following
describes the meaning of the 8 bits:

Bit Meaning

0=0 Indicates a member name.

0=1 Indicates an alias.

1 and 2 Indicate the number of TTRN fields (maximum of 3) in your data field.

3-7 Indicate the total number of halfwords in the user data field.

USER DATA FIELD: The user data field contains the user data for the directory entry. You
can use the user data field to provide variable data as input to the STOW macro;
there is no specific format for user data.

Notes:

 .

1. Note lists are not allowed for PDSEs, and will result in an error return code from STOW.

2. The replaced version of a member of a PDSE remains accessible using FIND by TTR or
the POINT macro until all connections to it are released. Connections are released
when the PDSE is closed.

Deleting a Directory Entry: The list address must specify an 8-byte area
containing the member name or alias to be deleted. The name must begin in
the first byte of the area and be padded on the right with blanks, if necessary,
to complete the 8 bytes.

When a member of a PDSE is deleted, it remains accessible using FIND by
TTR or the POINT macro until all connections to it are released. Connections
are released when the PDSE is closed.

Changing the Name of a Member: The list address must specify the address
of a 16-byte area. The first 8 bytes contain the old member name or alias, and
the second 8 bytes contain the new member name or alias. Both names must

360 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 STOW

begin in the first byte of their 8-byte area and be padded on the right with
blanks, if necessary, to complete the 8-byte field.

Initializing the Directory: Omit the list address when the directory action is “I.”
If the list address is specified, it will be ignored.

Disconnecting a List of Members: Each entry in the list address includes a
three byte MLT, a one byte concatenation number, and a one byte status field.
The MLT and the concatenation number may have been obtained from a prior
BLDL (the fields PDS2TTRP and PDS2CNCT of the directory entry define the
respective values). The following table defines the structure of the list:

directory action—[A |C|D|I|R|DISC]
If directory action is not coded, A (add an entry) is the default. The parameter
is coded as shown to specify the type of directory action:

A specifies that an entry is to be added to the directory.

C specifies that the name of an existing member or alias is to be changed.

D specifies that an existing directory entry is to be deleted. For PDSEs, when
the member name is deleted, all aliases for that member are deleted.

| I clears, or resets to empty, a PDSE directory. The parameter list (list
| address) is not required for STOW initialize. This function works only with
| PDSEs and the data set must be allocated with DISP=OLD or DISP=MOD.

R specifies that an existing directory entry be replaced by a new directory
entry. If R is coded but the old entry is not found, the new entry is added to
the directory and a completion code of X'08' is returned in register 15. For
PDSEs, when the member name is replaced, all aliases for that member
are deleted. The replaced version of the PDSE member is marked for
deletion, but it is not deleted until there are no applications accessing that
member.

DISC
indicates the disconnect function is to be performed.

Offset Length Description

X'00' 2 Length of list (from offset 0)

X'02' 1 Flags X'80' indicates DISC (set by STOW macro)

X'03' 2 Reserved. Must be X'0000'.

X'05' 3 DCB address

X'08' 0 Beginning of array of entries to be disconnected. The number of
entries is determined from length.

X'08' 1 Status field:

X'00' Member disconnected
X'01' Member not previously connected
X'02' Member represents a partitioned data set
X'03' Bad concatenation number

X'09' 1 Reserved. Must be X'00'.

X'0A' 3 MLT

X'0D' 1 Concatenation number

 Chapter 7. Non-VSAM Macro Descriptions 361

 STOW

STOW Completion Codes
When the system returns control to the problem program, register 15 contains a
return code and register 0 contains a reason code in the 2 low-order bytes. The
high-order bytes of both registers are set to 0. “Directory Action” in the table
heading refers to the directory functions add, change, delete, initialize, replace, and
disconnect.

Return Code
(15)

Reason Code
(0) Directory Action Meaning

00 (X'00') 00 (X'00') A, C, D, R The update of the directory was completed successfully.

 00 (X'00') I The directory was cleared (initialized) successfully.

 00 (X'00') DISC Function successful.

04 (X'04') 00 (X'00') A, C The directory already contains the specified new name.

 00 (X'00') DISC Error detected. Check status fields.

08 (X'08') 01 (X'01') DISC Reserved fields not zero.

 02 (X'02') DISC Bad length field (either too small for at least one array
entry or does not allow for even multiple of array
entries).

 03 (X'03') DISC Either no function bit is set or reserved function bit is set.

 00 (X'00') D, R The specified name could not be found.

 C The specified old
name could not be
found.

12 (X'0C') 00 (X'00') A, C, R No space left in the directory. The entry could not be
added, replaced, or changed.

16 (X'10') 01 (X'01') A, C, D, I, R A permanent input or output error was detected. Control
is not given to the error analysis (SYNAD) routine.

16 (X'10') 02 (X'02') A, R A permanent I/O error occurred while attempting to write
the EOF mark after the member. Control is not given to
the error analysis (SYNAD) routine.

 04 (X'04') A, C, D, R An error occurred while writing data buffered in system
buffers. Control is not given to the error analysis
(SYNAD) routine.

 1847
(X'737')

A, C, D, I, R The system found an I/O error while trying to read or
write the VTOC.1

 2871
(X'B37')

A, C, D, I, R The system was unable to update the VTOC.1

 3383
(X'D37')

A, C, D, I, R Either no secondary space is available or a DADSM user
exit error occurred. The error occurred when trying to
write an EOF; all primary space used.1

 3639
(X'E37')

A, C, D, I, R Either no secondary space is available or a DADSM user
exit error occurred.1

20 (X'14') 00 (X'00') A, C, D, I, R The specified data control block is not open or is opened
for input, or a DEB error occurred.

 04 (X'04') I The initialize function was specified but the PDSE was
allocated with DISP=SHR. Use DISP=OLD or
DISP=MOD.

362 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SYNADAF

Return Code
(15)

Reason Code
(0) Directory Action Meaning

24 (X'18') 00 (X'00') A, C, D, I, R Insufficient virtual storage was available to perform the
STOW function.

28 (X'1C') 00 (X'00') I The DCB defined a partitioned data set; the initialize
function supports only PDSEs.

 00 (X'00') A, R The caller attempted to issue add or replace for a
member of the Program Management Library, which is a
PDSE that contains program objects.

32 (X'20') A, C, D, I, R Reserved.

36 (X'24') 00 (X'00') A, R The alias has an invalid TTR (PDSEs only).

40 (X'28') 00 (X'00') A, R User-supplied TTRs are in the user data field of the
directory entry (PDSEs only).

44 (X'2C') A, C, D, I, R Reserved.

48 (X'30') 04 (X'04') A The add failed because you cannot add a primary
member name while the PDSE is open for update
(PDSEs only).

 08 (X'08') R The replace failed because you cannot replace a primary
member name while the PDSE is open for update and
the specified name does not exist (PDSEs only).

 12 (X'0C') R The replace failed because you cannot replace an alias
name if it is the same name as the primary member
(PDSEs only).

 16 (X'10') A, R The add or replace failed when attempting to add or
replace an alias, but the member identified by the TTR
did not exist (PDSEs only).

 20 (X'14') R The replace failed when attempting to replace a primary
member name while the PDSE is open for update and
the member name identified an existing alias (PDSEs
only).

 24 (X'18') R The replace failed when attempting to replace a primary
member name while the PDSE is open for update, but
the input TTR has not been defined for that member
(PDSEs only).

52 (X'34') 00 (X'00') I One or more members were placed in a pending delete
state; the space taken by those modules is not
immediately available for reuse.

Note:

1. See OS/390 MVS System Codes for more information on abend codes X'737', X'B37', X'D37', and
X'E37' .

SYNADAF—Perform SYNAD Analysis Function (BDAM, BISAM, BPAM,
BSAM, EXCP, QISAM, and QSAM)

The SYNADAF macro is used in an error analysis routine to analyze permanent
input/output errors. The routine can be a SYNAD exit routine specified in a data
control block for BDAM, BISAM, BPAM, BSAM, QISAM, QSAM, or a routine
specified in a DCBE for BPAM, BSAM, QSAM, or a routine that is entered directly

 Chapter 7. Non-VSAM Macro Descriptions 363

 SYNADAF

from a program that uses the EXCP macro. (The EXCP macro is described in
DFSMS/MVS DFSMSdfp Advanced Services and DFSMS/MVS Installation Exits)

| The SYNADAF macro uses register 1 to return the address of an area containing a
| message. The message describes the error, and can be printed by a later PUT,
| WRITE, or WTO macro. The message consists mainly of EBCDIC information and
| is in variable-length record format. The format of the message is shown following
| the descriptions of the SYNADAF parameters.

For extended format data sets, PDSEs, or HFS files, SYNADAF returns an
additional message. The first message contains an 'S' at offset 127 to indicate
that the second message exists. The second message is located at 8 bytes past
the end of the first message. This second message provides additional information
to further describe the error. It can be printed with another PUT, WRITE, or WTO
macro.

The system does not save registers in the save area whose address is in register
13. Instead, it provides a save area for its own use, and then makes this area
available to the error analysis routine. The system returns the address of the new
save area in register 13 and in the appropriate location (third word) of the previous
save area. The system also stores the address of the previous save area in the
appropriate location (second word) of the new save area.

When the SYNADAF macro is issued in 31-bit addressing mode, the caller must
ensure that the input save area address in register 13 is a valid 31-bit address.
This would be true unless your program changes it.

The SYNADAF macro passes parameters to the system in registers 0 and 1.
When used in a SYNAD exit routine, you should code the SYNADAF macro at the
beginning of the routine. (See DFSMS/MVS Using Data Sets for information on the
SYNAD exit routine.) For BISAM and QISAM, the SYNAD exit routine has to set up
these parameters as explained under PARM1 and PARM2. To save these
parameters for use by the SYNAD exit routine, the system stores them in a
parameter save area that follows the message buffer as shown in the message
buffer format. The second message immediately follows these two parameters.

The system does not alter the return address in register 14. On return from
SYNADAF, the high order byte of register 15 has been modified. The low order
three bytes are unchanged. Note that callers of SYNADAF in 31-bit addressing
mode must either not use register 15 as a base register or restore the high order
byte of register 15 on return from SYNADAF.

When a SYNADAF macro is used, you must use a SYNADRLS macro to release
the message buffer and save area, and to restore the original contents of register
13.

The format of the SYNADAF macro is:

364 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SYNADAF

ACSMETH=BDAM, BPAM, BSAM, QSAM, BISAM, EXCP, or QISAM
specifies the access method used to perform the input/output operation for
which error analysis is performed.

Note: BDAM, BISAM, EXCP, and QISAM are not recommended.

PARM1=parm register, iobaddr, or dcbaddr—(2-12) or (1)
specifies the address of information that is dependent on the access method
being used. For BDAM , BPAM , BSAM , or QSAM, the parameter specifies a
register containing the information that was in register 1 on entry to the SYNAD
routine. For BISAM or QISAM, it specifies the address of the data control
block. For EXCP, it specifies the address of the input/output block. If the
parameter is omitted, PARM1=(1) is assumed.

PARM2=parm register, dcbaddr, or iobaddr—(2-12), (0), or RX-Type
specifies the address of additional information that is dependent on the access
method being used. For BDAM , BPAM , BSAM , QISAM, and QSAM, the
parameter specifies a register containing the information that was in register 0
on entry to the SYNAD exit routine. For BISAM , the parameter specifies a
register containing the information that was in register 1 on entry to the SYNAD
exit routine (the address of the DECB). For EXCP, the parameter is
meaningless and should be omitted. If the parameter is omitted, except for
EXCP, PARM2=(0) is assumed.

Note: To correctly load the registers for SYNADAF for BISAM , code these two
instructions before issuing the SYNADAF macro:

LR ð,1 GET DECB ADDRESS
 L 1,8(1) GET DCB ADDRESS

[label] SYNADAF ACSMETH={BDAM
 [,PARM1=parm register]
 [,PARM2=parm register]}
 {BPAM
 [,PARM1=parm register]
 [,PARM2=parm register]}
 {BSAM
 [,PARM1=parm register]
 [,PARM2=parm register]}
 {QSAM
 [,PARM1=parm register]
 [,PARM2=parm register]}
 {BISAM
 [,PARM1=dcbaddr]
 [,PARM2=decbaddr]}
 {EXCP
 [,PARM1= iobaddr]}
 {QISAM
 [,PARM1=dcbaddr]
 [,PARM2=parm register]}

 Chapter 7. Non-VSAM Macro Descriptions 365

 SYNADAF

SYNADAF Completion Codes
When the system returns control to the problem program, the low-order byte of
register 0 contains a completion code. The 3 high-order bytes of register 0 are set
to 0.

The SYNADAF completion codes are:

Completion
Code (0) Meaning

00 (X'00') Successful completion. Bytes 8 through 13 of the message buffer contain blanks.

04 (X'04') Successful completion. Bytes 8 through 13 of the message buffer contain binary data.

08 (X'08') Unsuccessful completion. The message can be printed, but some information is missing in bytes 50
through 127 and is represented by asterisks. Bytes 8 through 13 will be 6 blanks
(X'404040404040') if no data was read. Otherwise, bytes 8 through 13 will contain binary data
which is the 4-byte address and the 2-byte length of data read.

Message Buffer Format
Figure 50 on page 367 shows the format of the message buffer.

366 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SYNADAF

L L b b l l b b

4 8

8 12 14

148

14 50

50 59 75 84

84 91

107 122

107 115 120 128

107 122 128

128 136

Doubleword

LL = 128; ll=124; bb=0

Input
Buffer
Address

No. of
Bytes
Read

(Blanks)

Input

Output

Jobname Stepname DDname

Operation
Attempted Error Description

Magnetic Tape:

Direct Access:

Unit Record:
Access
Method

Relative Block
Number (decimal)

Access
Method (Blanks)

Actual Track Address and Block Number
(BBCCHHR in hexadecimal format)

Parameter
Register 0
(PARM2)

Parameter
Register 1
(PARM1)

128

Parameter Save Area

Device
Type

(Asterisks)

Message Buffer
Byte 0

,

, , ,

, ,

,

,

,

, ,

68

(End of Buffer-
Beginning of
Parameter
Save Area

(Blanks)

Access
Method

127

264

Boundry

132

107

136

Message Area, Part I

Message Buffer

S

Message Area, Part II
(PDSE, Extended Format, or HFS File)

73

Device
Number

Concat-
enation
Number

, TTR Token
of Member
(PDSE only).

Relative Record
Number (PDSE
or HFS)
RBN (ext. fmt)

, SMS
Return
Code

, , SMS
Reason
Code

, ,

145 149 157 168 177

SMS
Diagnostic
Code

Blanks

186

LLbb llbb

188

Figure 50. Message Buffer Format

The address of the buffer is returned in register 1. The message comes in two
parts. Each part is a separate variable length record. If the data set being analyzed
is not a PDSE, an extended format data set, or an HFS file, only the first message
is created. Otherwise, both messages are created. The text of the first message is
120 characters long, and begins with a field of either 36 or 42 blanks; you can use
the blank field to add your own remarks to the message. The text of the second

 Chapter 7. Non-VSAM Macro Descriptions 367

 SYNADAF

message begins 8 bytes past the end of the first message. It is 128 characters long
and ends with several blanks (reserved for later use).

Notes:

1. If no data was transmitted, or if the access method is QISAM, bytes 8 through
13 contain blanks or binary zeros.

2. The device number field (bytes 68 through 71) is four bytes. Byte 72 is a
comma, and byte 73 contains D for DASD, T for tape, U for unit record, and *
for other.

3. The device number field (bytes 68 through 71) contains the letters “JES” if the
data set is SYSIN, SYSOUT, or for a subsystem. The device number field is
“OMVS” for an HFS file.

4. If a message field (bytes 91 through 105) is not applicable to the type of error
that occurred, it contains N/A or NOT APPLICABLE. All physical errors are
indicated as data checks.

5. If the access method is BISAM, bytes 68 through 71, 84 through 89, and 107
through 120 contain asterisks.

6. If the data set is a compressed format data set, bytes 107 through 120 contain
the actual address of the failing physical RBN within the data set. If the I/O
error is due to a logical error as opposed to a physical I/O error, this field may
contain asterisks for a compressed format data set.

7. If the access method is BDAM, and if the error was an invalid request, bytes
107 through 120 contain EBCDIC zeros.

8. 'S' (byte 127) indicates that a second message follows with additional
information.

9. The MLT field (bytes 149 to 156) contains the TTR of the PDSE member. For
PDSEs, the TTR is a token number representing the track record location. This
field is zero for extended format data sets.

10. For PDSE members, add 1 048 576 (X'1000000') to the relative record
number (RRN at bytes 157 to 167) to get the actual TTR of the record. For
extended format data sets, this field contains the relative block number (RBN)
within the data set. For compressed format data sets, this field contains the
user RBN within the data set. For HFS files this field contains the RRN within
the file (the maximum displayed is X'FFFFFF').

11. If you suspect a system software error, report the SMS return code, reason
code, and diagnostic code to your IBM service representative.

12. If the error description (starting at byte 91) indicates padding error, the data set
is an extended format data set and the data was damaged when written. This
typically occurs due to a hardware error, an operator cancel, or time out while
the control unit was transmitting data to DASD.

13. For compressed format data sets, the Relative Block Number (bytes 107-113)
contains the user relative block number (user RBN) within the data set.

14. Actual Address (bytes 107 through 120) contains the low order 6 bytes of the
file offset (in terms of bytes) within the file.

15. Additional diagnostic information from a possible OS/390 UNIX error is stored in
bytes 189-204 in the second message.

368 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SYNADRLS

SYNADRLS—Release SYNADAF Buffer and Save Areas (BDAM,
BISAM, BPAM, BSAM, EXCP, QISAM, and QSAM)

The SYNADRLS macro releases the message buffer, parameter save area, and
register save area provided by a SYNADAF macro. It must be used to perform this
function whenever a SYNADAF macro is used.

When the SYNADRLS macro is issued, register 13 must contain the address of the
register save area provided by the SYNADAF macro. The control program loads
register 13 with the address of the previous save area, and sets word 3 of that
save area to 0. Thus, when control is returned, the save area pointers are the
same as before the SYNADAF macro was issued.

The SYNADRLS macro may be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.
When the SYNADRLS macro is issued in 31-bit addressing mode, the caller must
ensure that the input save area address in register 13 is a valid 31-bit address.
This would be true unless your program changes it.

On return from SYNADRLS, register 15 will be unpredictable. Therefore, callers in
31-bit addressing mode must either not use register 15 as a base register or must
restore register 15 on return from SYNADAF or SYNADRLS.

The format of the SYNADRLS macro is:

[label] SYNADRLS b

SYNADRLS Completion Codes
When the system returns control to the problem program, the low-order byte of
register 0 contains a completion code. The 3 high-order bytes of register 0 are set
to 0.

The SYNADRLS completion codes are:

Completion
Code (0) Meaning

00 (X'00') Successful completion.

08 (X'08') Unsuccessful completion. The buffer and save areas were not released; the contents of register
13 remain unchanged. Register 13 does not point to the save area provided by the SYNADAF
macro, or this save area is not properly chained to the previous save area.

 Chapter 7. Non-VSAM Macro Descriptions 369

 SYNCDEV

SYNCDEV—Synchronize Device (BSAM, BPAM, QSAM, EXCP)

Tape Data Sets
The SYNCDEV macro allows you to suspend your program until the control unit
cache contents have been written to the magnetic tape cartridge.9This synchronizes
your program's data and the data on the tape. When you synchronize your data,
you ensure that the system checks your data and does not lose any of it when the
system writes the data out to storage. Thus, you can avoid several problems you
might have if your data is not synchronized.

For example, if your data is not synchronized, your program could update other
data sets before the records that were sent to the buffer have finished being written
onto tape. How much data is left in the buffer depends on how fast the tape moves.
If your program and the tape drive fail, then the tape and the other data set would
have inconsistent contents. The problems discussed in this paragraph rarely occur.
The system automatically synchronizes the data when going to a new volume or
when the data set is closed. The use of SYNCDEV can severely degrade
performance of the tape drive.

You can use the SYNCDEV macro to:

� Request information regarding synchronization

� Demand synchronization if the specified number of data blocks are buffered. If
more blocks are buffered than were specified, the system stays in control until
all the blocks are written to the tape or it detects an I/O error. If the same
amount or fewer blocks are buffered, buffering is not affected. With BSAM your
program should issue CHECK or WAIT macros for all outstanding writes. With
EXCP, your program should wait for completion of all writes or purge them.
SYNCDEV purges outstanding I/O.

Note: Demands for synchronization are ignored if the drive is in read mode.

DASD Data Sets
The SYNCDEV macro allows you to synchronize data from the following types of
DASD data sets when open for update or output:

 � PDSEs
� Compressed format data sets

 � HFS files

All other types of data sets are not supported.

For DASD data sets, requests for synchronization information or for partial
synchronization cause complete synchronization. The keywords ABUFBLK,
BUFBLK, and INQ are ignored. Use the SYNCDEV macro if you need to ensure
that a specific record is on DASD at a specific time.

SYNCDEV guarantees that the data from previously checked output requests has
been written to DASD. If you are using BSAM, you still need to issue a CHECK for
each WRITE before issuing the SYNCDEV macro. When using SYNCDEV with

9 All cartridge tapes support buffered write mode.

370 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 SYNCDEV

QSAM, any records left in your current buffer are held if that buffer is only partially
filled.

Notes:

1. Data is always synchronized at CLOSE (or STOW for PDSEs opened with
DSORG=PO).

2. Instead of using the SYNCDEV macro, you can specify “Guaranteed
Synchronous Write” through storage class to synchronize the data if the PDSE
member is open for update or if the data set is a compressed format data set
open for output. See DFSMS/MVS DFSMSdfp Storage Administration
Reference for more information. The use of SYNCDEV or of “Guaranteed
Synchronous Write” can severely degrade performance of data transfer.

The SYNCDEV macro can be issued in 24- or 31-bit addressing mode. When
issued in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the SYNCDEV macro is:

DCB=addr—A-Type address or (2-12)
specifies the address of the data control block. When SYNCDEV is issued in
31-bit addressing mode, the input DCB address must be a clean 31-bit
address.

ABUFBLK= addr| BUFBLK={ maximum buffer depth|0}
specifies the maximum number of data blocks that can remain buffered.

ABUFBLK= addr—A-Type address or (2-12)
specifies the address of a halfword on a halfword boundary containing a
value that specifies the maximum number of data blocks that are buffered.
This parameter has no effect on DASD.

This inquiry call also synchronizes DASD data sets as if BUFBLK=0 were
coded. When issued in 31-bit addressing mode, the input ABUFBLK
address must be a clean 31-bit address.

BUFBLK={ maximum buffer depth|0}
specifies the maximum number of data blocks that are buffered. This
number can be an absolute value from 0 to 65535. The BUFBLK value can
be in the 2 low-order bytes of a register (2-12). This parameter has no
effect on DASD.

0 If neither ABUFBLK nor BUFBLK is specified, the number of data
blocks that are be buffered defaults to 0, and no data blocks are
buffered.

INQ={YES|NO}
specifies whether this is a request for information about the degree of
synchronization or a request for synchronization. This parameter has no effect
on DASD.

[label] SYNCDEV DCB=addr
[,{ABUFBLK= addr|

BUFBLK={ maximum buffer depth|0}}]
[,INQ={YES|NO}]

 Chapter 7. Non-VSAM Macro Descriptions 371

 SYNCDEV

YES
specifies an inquiry about how many data blocks are in the buffer. This
inquiry call also synchronizes DASD data sets and sets the buffer depth to
0.

NO
specifies a request for synchronization based on the number of data blocks
that can be buffered as specified in ABUFBLK or BUFBLK.

Register 0 returns the number of blocks that were in the buffer when
SYNCDEV began.

 SYNCDEV—List Form
The list form of the SYNCDEV macro is:

DCB=addr—A-Type address

BUFBLK={ maximum buffer depth|0}

INQ={YES|NO}

MF=L
generates a parameter list containing no executable instructions. The list can
be used as input and can be modified by the execute form of the SYNCDEV
macro.

[label] SYNCDEV [DCB=addr]
[,BUFBLK= {maximum buffer depth|0}]
[,INQ={YES|NO}]
,MF=L

 SYNCDEV—Execute Form
The execute form of the SYNCDEV macro is:

DCB=addr—RX-Type address or (2-12)

ABUFBLK= addr| BUFBLK={ maximum buffer depth|0}

INQ={YES|NO}

MF=(E,addr)
specifies the execute form of SYNCDEV.

[label] SYNCDEV [DCB=addr]
[,{ABUFBLK= addr|

BUFBLK={ maximum buffer depth|0}}]
[,INQ={YES|NO}]
,MF=(E,addr)

372 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 TRUNC

addr—RX-Type address, or (2-12)
specifies the address for the parameter list.

SYNCDEV Completion Codes
When the system returns control to your problem program, the low-order byte of
register 15 contains a return code. If register 15 is nonzero, the low-order byte of
register 0 contains a reason code.

The SYNCDEV return and reason codes are:

Return Code (15) Reason Code (0) Meaning

00 (X'00') Successful completion. Register 0 always contains 0.

04 (X'04') 01 (X'01') Incorrect parameter.

04 (X'04') 02 (X'02') Incorrect DCB or a DEB error.

 03 (X'03') System error occurred.

 04 (X'04') Possible system error.

 05 (X'05') 1) Device does not support buffering, or 2) SYNCDEV was issued for a
DASD data set that is not supported.

 06 (X'06') Device does not support block IDs for tape data.

 07 (X'07') Invalid environment was detected by an SMS service while processing a
DASD data set. Probable system error.

 08 (X'08') This is an informational message that is issued when using QSAM to
process a DASD data set. SYNCDEV completed successfully. Logical
records left in your QSAM buffer might not have been written to DASD.

 11 (X'0B') Unsuccessful call to ESTAE macro.

 12 (X'0C') Insufficient virtual storage available.

08 (X'08') 00 (X'00') Permanent I/O error during read block ID or synchronize command.

12 (X'0C') 00 (X'00') Permanent I/O error on the last channel program with loss of data (for
tape data only).

Note: If you specified a SYNAD option in the DCB and issue a PUT or
CHECK macro after this error occurs, your program cannot enter
the SYNAD routine.

 01 (X'01') An I/O error was detected by a previous output request while processing
a DASD data set.

TRUNC—Truncate Buffer (QSAM Output—Fixed- or Variable-Length
Blocked Records and BSAM)

For QSAM: The TRUNC macro causes the current output buffer to be regarded as
full. The next PUT or PUTX macro specifying the same data control block uses the
next buffer to hold the logical record.

A TRUNC macro issued against a PDSE does not create a short block because the
block boundaries are not saved on output. On input, the system uses the block size
specified in DCBBLKSI for reading the PDSE.

 Chapter 7. Non-VSAM Macro Descriptions 373

 WAIT

When a variable-length spanned record is truncated and logical record interface, or
extended logical record interface, is specified (that is, if BFTEK=A is specified in
the DCB macro, or if a BUILDRCD macro is issued, or if DCBLRECL=0K or
nnnnnK is specified), the system segments and writes the record before truncating
the buffer. Therefore, the block being truncated is the one containing the last
segment of the spanned record.

The TRUNC macro is ignored if it is used for unblocked records, if it is used when
a buffer is full, if it is used without an intervening PUT or PUTX macro, or when
used it is used with HFS files.

For BSAM on DASD: The TRUNC macro causes any queued READs or WRITEs
to be issued although the accumulation limit has not been reached. See the DCBE
MULTACC parameter.

The BSAM issuer of TRUNC should ensure that if the DCB address is supplied in a
register, it must be a valid 31-bit address even if the issuer is not in 31-bit mode. If
the buffers are above the line, TRUNC must be issued in 31-bit mode.

If you issue a TRUNC macro for a DCB for a spooled, tape, dummy, or
compressed format data set, it has no effect. However, if a WAIT is issued while
DCBE MULTACC is specified, it is recommended that it be preceded by a TRUNC
macro because future levels of the system may require it.

Do not issue a TRUNC macro when using BSAM to create a direct (BSAM) data
set or with BFTEK=R (when reading a direct data set).

The TRUNC macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the TRUNC macro is:

dcb address—RX-Type Address, (2-12), or (1)
specifies the address of the data control block for the sequential data set
opened for QSAM output or for BSAM. For QSAM, the record format in the
data control block must not indicate standard blocked records (RECFM=FBS).
When issued in 31-bit addressing mode, the input DCB address must be a
clean 31-bit address.

[label] TRUNC dcb address

WAIT—Wait for One or More Events (BDAM, BISAM, BPAM, and
BSAM)

The WAIT macro informs the control program that performance of the active task
cannot continue until one or more specific events, each represented by a different
ECB (event control block), have occurred. The ECBs represent completion of I/O
processing associated with a READ or WRITE macro. ECBs are located at the
beginning of access method DECBs (data event control blocks), so that the DECB
name provided in READ and WRITE macros is also used for WAIT. (A description
of the ECB is found in “Status Information Following an Input/Output Operation” on
page 393. For information on when to use the WAIT macro, see DFSMS/MVS
Using Data Sets.)

374 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WAIT

The control program takes the following action:

� For each event that has already occurred (each ECB is already posted), the
count of the number of events is decreased by 1.

� If number of events is 0 when the last event control block is checked, control is
returned to the instruction following the WAIT macro.

� If number of events is not 0 when the last ECB is checked, control is not
returned to the issuing program until sufficient ECBs are posted to bring the
number to 0. Control is then returned to the instruction following the WAIT
macro.

� The events are posted complete by the system when all I/O is completed,
temporary errors corrected, and length checking performed. The DECB is not
checked for errors or exceptional conditions, nor are end-of-volume procedures
initiated. Your program must perform these operations.

If you coded MULTACC on the DCBE macro with a nonzero value and you
issue a WAIT macro for a BSAM or BPAM DECB, then issue a TRUNC macro
before the WAIT and after the previous READ or WRITE to the DECB.

Processing PDSEs and Compressed Format Data Sets

If the PDSE member is open for update or a compressed format data set is open
for output, and in a storage class with “Guaranteed Synchronous Write” specified,
issue a CHECK macro following a WRITE macro to guarantee that the data is
synchronized to DASD. Otherwise, synchronization is not guaranteed until CLOSE,
or the STOW macro or the SYNCDEV macro is issued. Synchronization occurs at
CLOSE if BSAM or QSAM are used to process the PDSE members or compressed
format data set. Specifying “Guaranteed Synchronous Write” in the storage class
produces the same result as issuing the SYNCDEV macro.

The format of the WAIT macro is:

number of events
specifies a decimal integer from 0 to 255. Zero is an effective NOP instruction;
1 is assumed if the parameter is omitted. The number of events must not
exceed the number of event control blocks. You can also use register notation
(2-12).

ECB=addr
specifies the address of the event control block (or DECB) representing the
single event that must occur before processing can continue. The parameter is
valid only if the number of events is specified as 1 or is omitted.

addr
specify RX type or use register notation (1-12).

ECBLIST=addr
specifies the address of a virtual storage area containing one or more
consecutive fullwords on a fullword boundary. Each fullword contains the
address of an event control block (or DECB). The high-order bit in the last word

[label] WAIT [number of events]
{,ECB=addr|ECBLIST=addr}
[,LONG={YES|NO }]

 Chapter 7. Non-VSAM Macro Descriptions 375

 WRITE

(address) must be set to 1 to indicate the end of the list. The number of event
control blocks must be equal to or greater than the specified number of events.

LONG=[YES|NO]
specifies whether the task is entering a long wait or a regular wait. Normally,
I/O events should not be considered 'long' unless it is anticipated that operator
intervention is required.

Caution: A job step with all its tasks in a WAIT condition terminates on expiration
of the time limits that apply to it.

Access method ECBs are maintained entirely by the access methods and
supporting control program facilities. You can inspect access method ECBs, but
should never modify them.

WRITE—Write a Block (BDAM)
Use of the WRITE (BDAM) macro is not recommended. We recommend you use a
device-independent access method such as BSAM, BPAM, or QSAM instead.

The WRITE macro adds or replaces a block in an existing direct data set. (This
version of the WRITE macro cannot be used to create a direct data set because no
capacity record facilities are provided.) Control might be returned to the problem
program before the block is written. The output operation must be tested for
completion using a CHECK or WAIT macro. A data event control block, shown in
“Status Information Following an Input/Output Operation” on page 393, is
constructed as part of the macro expansion.

The WRITE macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The standard form of the WRITE macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block created as part of
the macro expansion.

type—{DA[F]}
 {DI[F|X]}
 {DK[F|X]}

is coded in one of the combinations shown to specify the type of write
operation and optional services performed by the system:

[label] WRITE decb name
,{DA[F]}
{DI[F|X]}
{DK[F|X]}
,dcb address
,{area address|'S'}
,{length|'S'}
,{key address|'S'|0}
,block address

376 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRITE

DA
specifies that a new block is added to the data set. The search for available
space starts on the track indicated by the block address. Fixed-length
records (with keys only) are added to a data set by replacing dummy
records. Variable-length records (with or without keys) are added to a data
set by using available space on a track. (For more information on adding
records to a direct data set, see DFSMS/MVS Using Data Sets. For a
description of adding records with extended search, see the LIMCT
parameter of the DCB macro.)

DI specifies that a data block and key, if any, are written at the device address
indicated in the area specified in the block address. Any attempt to write a
capacity record (R0) is an invalid request when relative track addressing or
actual track addressing are used, but when relative block addressing is
used, relative block 0 is the first data block in the data set.

DK
specifies that a data block (only) is written using the key in the area
specified by the key address as a search argument. The search for the
block starts at the device address indicated in the area specified in the
block address. The description of the DCB macro LIMCT parameter
contains a description of the search.

F requests that the system provide block position feedback into the area
specified in the block address. This character can be coded as a suffix to
DA, DI, or DK as shown above.

X requests that the system release the exclusive control requested by a
previous READ macro and provide block position feedback into the area
specified in the block address. This character can be coded as a suffix to
DI or DK as shown above.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened direct data set.
When issued in 31-bit addressing mode, the input DCB address and area
address must be clean 31-bit addresses.

area address—A-Type Address, (2-12), or 'S'
specifies the address of the area containing the data block to be written. 'S'
can be coded instead of an area address only if the data block (or key and
data) are contained in a buffer provided by dynamic buffering. That is, 'S' was
coded in the area address of the associated READ macro. If 'S' is coded in
the WRITE macro, the area address from the READ macro data event control
block must be moved into the WRITE macro data event control block. The
buffer area acquired by dynamic buffering is released after the WRITE macro is
executed. For a description of the data event control block, see “Status
Information Following an Input/Output Operation” on page 393. If the input area
address resides above the 16MB line, you must issue the WRITE in 31-bit
mode.

length—symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of data bytes to be written (up to a maximum of 32760). If
'S' is coded, it specifies that the system uses the value in the block size
(DCBBLKSI) field of the DCB as the length. When undefined-length records are
used, if the WRITE macro is for update and the length specified differs from the
original block, the new block is truncated or padded with binary zeros

 Chapter 7. Non-VSAM Macro Descriptions 377

 WRITE

accordingly. The problem program can check for this situation in the SYNAD
routine.

If length is omitted for format-U records, no error indication is given when the
program is assembled, but the problem program must insert a length into the
data event control block before the WRITE macro is executed.

key address—A-Type Address, (2-12), 'S', or 0
specifies the address of the area containing the key to be used. Specify 'S'
instead of an address only if the key is contained in an area acquired by
dynamic buffering. If the key is not to be written or used as a search argument,
specify zero instead of a key address.

block address—A-Type Address or (2-12)
specifies the address of the area containing the relative block address, relative
track address, or actual device address used in the output operation. The
length of the area depends on the type of addressing used and if the feedback
option (OPTCD=F) is specified in the data control block.

If OPTCD=F is specified in the DCB macro and F or X is specified in the
WRITE macro, you must provide a relative block address in the form specified
by OPTCD in the DCB macro. For example, if OPTCD=R is specified, you must
provide a 3-byte relative block address. If OPTCD=A is specified, you must
provide an 8-byte actual device address (MBBCCHHR). If neither is specified,
you must provide a 3-byte relative address (TTR).

If OPTCD=F is not specified in the DCB macro and F or X is specified in the
WRITE macro, then you must provide an 8-byte actual device address
(MBBCCHHR) even if relative block or relative track addressing is being used.

WRITE—Write a Logical Record or Block of Records (BISAM)
Use of the WRITE (BISAM) macro is not recommended. We recommend you use
VSAM instead.

The WRITE macro adds or replaces a record or replaces an updated block in an
existing indexed sequential data set. Control might be returned to the problem
program before the block or record is written. The output operation must be tested
for completion using a WAIT or CHECK macro. A data event control block, shown
in “Status Information Following an Input/Output Operation” on page 393, is
constructed as part of the macro expansion.

The standard form of the WRITE macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block created as part of
the macro expansion.

[label] WRITE decb name
,{K|KN}
,dcb address
,{area address|'S'}
,{length|'S'}
,key address

378 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRITE

type—{K|KN}
specifies the type of write operation:

K specifies that either an updated unblocked record or a block containing an
updated record is to be written. If the record is read using a READ KU
macro, the data event control block for the READ macro must be used as
the data event control block for the WRITE macro, using the execute form
of the WRITE macro.

KN
specifies that a new record is to be written, or a variable-length record is to
be rewritten with a different length. All records or blocks of records read
using READ KU macros for the same data control block must be written
back before a new record can be added, except when the READ KU and
WRITE KN refer to the same DECB.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block for the opened existing indexed
sequential data set. If a block is written, the data control block address must be
the same as the dcb address in the corresponding READ macro.

area address—A-Type Address, (2-12), or 'S'
specifies the address of the area containing the logical record or block of
records to be written. The first 16 bytes of this area are used by the system
and should not contain your data. The area address must specify a different
area than the key address. When new records are written (or when
variable-length records are rewritten with a different length), the area address
of the new record must always be supplied by the problem program. The
addressed area might be altered by the system. 'S' can be coded instead of
an address only if the block of records is contained in an area provided by
dynamic buffering. That is, 'S' is coded for the area address in the associated
READ KU macro. The addressed area is released after execution of a WRITE
macro using the same DECB. The area can also be released by a FREEDBUF
macro.

The following illustration shows the format of the area:

Control
Program Use

Logical Record (WRITE KN) or Block
of Records (WRITE K)

Area Address

Indexed sequential buffer and work area requirements are discussed in
DFSMS/MVS Using Data Sets.

length—symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of data bytes to be written, up to a maximum of 32760.
Specify 'S' unless a variable-length record is to be rewritten with a different
length.

 Chapter 7. Non-VSAM Macro Descriptions 379

 WRITE

key address—A-Type Address or (2-12)
specifies the address of the area containing the key of the new or updated
record. The key address must specify a different area than the area address.
For blocked records, this is not necessarily the high key in the block. For
unblocked records, this field should not overlap with the work area specified in
the MSWA of the DCB macro.

Note: When new records are written, the key area might be altered by the
system.

WRITE—Write a Block (BPAM and BSAM)
The WRITE macro adds or replaces a block in a sequential or partitioned data set
being allocated or updated. Control might be returned to the problem program
before the block is written. The output operation must be tested for completion
using the CHECK macro. A data event control block, shown in “Status Information
Following an Input/Output Operation” on page 393, is constructed as part of the
macro expansion.

| Data Conversion

| You can request conversion by coding LABEL=(,AL) or (,AUL) in the DD statement,
| or by coding OPTCD=Q in the DCB macro or DCB subparameter of the DD
| statement. When conversion is requested, all records whose record format (RECFM
| parameter) is F, FB, D, DS, DB, DBS, or U are automatically converted from one
| character representation to another. Conversion is performed according to one of
| the following techniques:

| � Coded Character Set Identifier (CCSID) conversion

| If CCSIDs are supplied from any source10 for ISO/ANSI V4 tapes, records are
| converted from the CCSID as seen by the problem program to the CCSID
| which represents the data on tape. You can also prevent conversion by
| supplying a special CCSID.

| � Default Character Conversion

| If you are using non-ISO/ANSI V4 tapes or if CCSIDs are not supplied by any
| source, data management converts the records from EBCDIC code to ASCII
| code using specific tables defined for this default character conversion.

| Refer to DFSMS/MVS Using Data Sets, SC26-4922 for a complete description of
| CCSID conversion and Default Character conversion.

If conversion from EBCDIC code to ASCII code is requested, issuing multiple
WRITE macros for the same record causes an error because the first WRITE
macro issued converts the output data in the output buffer into ASCII code. This
problem also exists when converting from one CCSID to another.

If the OPEN macro specifies UPDAT, both the READ and WRITE macros must
refer to the same data event control block. See the list form of the READ or WRITE
macro for a description of how to construct a data event control block. See the

| 10 CCSID may be supplied in the CCSID subparameter of a JOB, EXEC, or DD statement or the tape label.

380 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRITE

execute form of the READ or WRITE macro for a description of modifying an
existing data event control block.

Processing PDSEs and Compressed Format Data Sets: If the PDSE member is
open for update or a compressed format data set is open for output, and it resides
in a storage class with “Guaranteed Synchronous Write” specified, issue a CHECK
macro following a WRITE macro to guarantee that the data is synchronized to
DASD. Otherwise, synchronization is not guaranteed until CLOSE, or the STOW
macro or the SYNCDEV macro is issued. Synchronization occurs at CLOSE if
BSAM or QSAM are used to process the PDSE member or compressed format
data set. Specifying “Guaranteed Synchronous Write” in the storage class
produces the same result as issuing the SYNCDEV macro.

When processing a compressed format data set and NOTE/POINT is specified in
the DCB (MACRF=P), a WRITE issued for a block whose user RBN value exceeds
16 777 215 will result in an I/O error. This is due to the fact that the NOTE/POINT
interface is limited by a 3 byte token.

The last write issued against an HFS file before CLOSE denotes the end of the file.
Any type of positioning (POINT, BSP, CLOSE TYPE=T REREAD) following a
WRITE does not truncate the file.

The WRITE macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

BSAM allows data areas to be located above the 16MB line. This includes allowing
the caller to issue most BPAM and BSAM macros in 31-bit addressing mode
regardless of whether the data area is above or below the 16MB line. Most types of
data sets support 31-bit mode. See “31-Bit Addressing Mode” on page 165.

The standard form of WRITE must be issued from a program that resides below the
16MB line because the DECB must reside below the line.

To take advantage of providing data areas above the 16MB line for BSAM macros,
the issuer of the WRITE macro must execute in 31-bit addressing mode.

The standard form of the WRITE macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block created as part of
the macro expansion.

type—SF
specifies normal, sequential, forward operation.

dcb address—A-Type Address, or (2-12)
specifies the address of the data control block for the opened data set being
allocated or processed. If the data set is being updated, the data control block

[label] WRITE decb name
,SF
,dcb address
,area address
[,{ length|'S'}]

 Chapter 7. Non-VSAM Macro Descriptions 381

 WRITE

address must be the same as the dcb address in the corresponding READ
macro. When issued in 31-bit addressing mode, the input DCB address must
be a clean 31-bit address. If the data area resides above the 16MB line, you
must issue the WRITE in 31-bit mode.

area address—A-Type Address or (2-12)
specifies the address of the area containing the data block to be written. If a
key is written, the key must precede the data in the same area.

length—symbol, decimal digit, absexp, (2-12) or 'S'
specifies the number of bytes to be written. This parameter is specified for only
undefined-length records (RECFM=U) or for ASCII records (RECFM=D) when
the DCB BUFOFF parameter is zero. For ISO/ANSI Version 3 AL tapes, the
maximum length is 2048 bytes; otherwise, the maximum length is 32760 bytes.
You can code 'S' to indicate that the value specified in the block size
(DCBBLKSI) field of the data control block is used as the length to be written.
Omit the length parameter for all record formats except format-U and format-D
(when BUFOFF=0).

If length is omitted for format-U or format-D (with BUFOFF=0) records, no error
indication is given when the program is assembled, but the problem program
must insert a length into the data event control block before the WRITE macro
is issued.

WRITE—Write a Block (Create a Direct Data Set with BSAM)
Use of the WRITE (BDAM) macro is not recommended. We recommend you use
WRITE (BSAM) instead.

The WRITE macro adds a block to the direct data set being created. For
fixed-length blocks, the system writes the capacity record automatically when the
current track is filled. For variable and undefined-length blocks, a WRITE macro
must be issued for the capacity record. Control might be returned to the problem
program before the block is written. The output operations must be tested for
completion using a CHECK macro. A data event control block, shown in “Status
Information Following an Input/Output Operation” on page 393, is constructed as
part of the macro expansion.

The standard form of the WRITE macro is written as follows (the list and execute
forms are shown following the descriptions of the standard form):

decb name—symbol
specifies the name assigned to the data event control block created as part of
the macro expansion.

type—{SF|SFR|SD|SZ}
is coded as shown, to specify the type of write operation performed by the
system:

[label] WRITE decb name
,{SF|SFR|SD|SZ}
,dcb address
,area address
[,{ length|'S'}]
[,next address]

382 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRITE

SF specifies that a new data block is written in the data set.

SFR
specifies that a new variable-length spanned record is written in the data
set, and next address feedback is requested. This parameter can be
specified only for variable-length spanned records (BFTEK=R and
RECFM=VS are specified in the data set control block). If type SFR is
specified, the next address parameter must be included.

SD
specifies that a dummy data block is written in the data set. Dummy data
blocks can be written only when fixed-length records with keys are used.

SZ specifies that a capacity record (R0) is written in the data set. Capacity
records can be written only when variable-length or undefined-length
records are used.

dcb address—A-Type Address or (2-12)
specifies the address of the data control block opened for the data set being
created. You must specify DSORG=PS (or PSU) and MACRF=WL in the DCB
macro to create a direct data set.

area address—A-Type Address or (2-12)
specifies the address of the area containing the data block to be added to the
data set. If keys are used, the key must precede the data in the same area. For
writing capacity records (SZ), area address is ignored and can be omitted (the
system supplies the information for the capacity record). For writing dummy
data blocks (SD), the area need be only large enough to hold the key plus one
data byte. The system constructs a dummy key with the first byte set to all 1
bits (hexadecimal FF) and adds the block number in the first byte following the
key. When a dummy block is written, a complete block is written from the area
immediately following the area address. Therefore, area address plus the
value specified in BLKSIZE and KEYLEN must be within the area allocated to
the program writing the dummy blocks.

length—symbol, decimal digit, absexp, (2-12), or 'S'
is used only when undefined-length (RECFM=U) blocks are being written. The
parameter specifies the length of the block, in bytes, up to a maximum of
32760. If 'S' is coded, it specifies that the system uses the length in the block
size (DCBBLKSI) field of the data control block as the length of the block to be
written.

If length is omitted for format-U records, no error indication is given when the
program is assembled, but the problem program must insert a length into the
data event control block before the WRITE is issued.

next address—A-Type Address or (2-12)
specifies the address of the area where the system places the relative track
address of the next record to be written. Next address feedback can be
requested only when variable-length spanned records are used.

Note: When variable-length spanned records are used (RECFM=VS and
BFTEK=R are specified in the data control block), the system writes
capacity records (R0) automatically in the following cases:

� When a record spans a track.

 Chapter 7. Non-VSAM Macro Descriptions 383

 WRITE

� When the record cannot be written completely on the current volume. In this
case, all capacity records of remaining tracks on the current volume are written.
Tracks not written are still counted in the search limit specified in the LIMCT
parameter of the data control block.

� When the record written is the last record on the track, the remaining space on
the track cannot hold more than 8 bytes of data.

WRITE Completion Codes—Write a Block (Create a Direct Data Set
with BSAM)

After the write has been scheduled and control returns to your problem program,
the three high-order bytes of register 15 are set to 0. The low-order byte contains a
return code.

The WRITE return codes are:

Return Code (15) Fixed-Length (SF or SD)
Variable or Undefined-
length (SF or SFR)

Variable or Undefined-
length (SZ)

00 (X'00') Block is written. (If the
previous return code was
08, a block is written only if
the DD statement specifies
secondary space allocation
and sufficient space is
available.)

Block is written. (If the
previous return code was
08, a block is written only
if the DD statement
specifies secondary
space allocation and
sufficient space is
available.)

Capacity record was written;
another track is available.

04 (X'04') Block is written, followed by
a capacity record. (If the
previous return code was
08, a block is written only if
the DD statement specifies
secondary space allocation
and sufficient space is
available.)

Block was not written;
write a capacity record
(SZ) to describe the
current track, then reissue
the WRITE macro.

—

08 (X'08') Block is written, followed by
a capacity record. The next
block requires secondary
space allocation.

— Capacity record was written.
The next block requires
secondary space allocation.
This code is not issued if the
WRITE macro is issued on a
one-track secondary extent.

12 (X'0C') Block is not written; issue a
CHECK macro for the
previous WRITE macro,
then reissue the WRITE
macro.

Block is not written; issue
a CHECK macro for the
previous WRITE macro,
then reissue the WRITE
macro.

Block is not written; issue a
CHECK macro for the
previous WRITE macro, then
reissue the WRITE macro.

Note: For fixed-length records, the return codes are unpredictable.

384 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 WRITE

 WRITE—List Form
The list form of the WRITE macro is used to construct a data management
parameter list as a data event control block (DECB). For a description of the
various fields in the DECB for each access method, see “Status Information
Following an Input/Output Operation” on page 393.

The description of the standard form of the WRITE macro explains the function of
the parameters used for each access method, and the meaning of 'S' when coded
for the area address, length, and key address parameters. For each access
method, 'S' can be coded only for those parameters for which it can be coded in
the standard form of the macro. The format description below indicates the optional
and required parameters in the list form only, but does not indicate optional and
required parameters for any specific access method.

The list form of the WRITE macro may be assembled into a program that resides
above the 16MB line, but the execute form of READ or WRITE cannot use it there.
You may copy it to below the 16MB line so the copy can be used, possibly in 31-bit
mode.

The list form of the WRITE macro is:

decb name—symbol

type—code one of the types shown in the standard form

dcb address—A-Type Address

area address—A-Type Address or 'S'

length—symbol, decimal digit, absexp, or 'S'

key address—A-Type Address or 'S'

block address—A-Type Address

next address—A-Type Address

MF=L
specifies the WRITE macro is used to create a data event control block that is
to be referred to by an execute-form instruction.

[label] WRITE decb name
,type
,[dcb address]
,[area address|'S']
,[length|'S']
,[key address|'S']
,[block address]
,[next address],MF=L

 Chapter 7. Non-VSAM Macro Descriptions 385

 XLATE

 WRITE—Execute Form
A remote data management parameter list (data event control block) is used in, and
can be modified by, the execute form of the WRITE macro. The data event control
block can be generated by the list form of either a READ or WRITE macro.

The description of the standard form of the WRITE macro explains the function of
the parameters used for each access method, and the meaning of 'S' when coded
for the area address, length, and key address parameters. For each access
method, 'S' can be coded only for those parameters for which it can be coded in
the standard form of the macro. The format description below indicates the optional
and required parameters in the execute form only, but does not indicate the
optional and required parameters for any specific access method.

The execute form of the WRITE macro is written as follows:

decb address—RX-Type Address or (1-12). This must reside below the 16MB line.

type—code one of the types shown in the standard form

dcb address—RX-Type Address or (2-12)

area address—RX-Type Address, (2-12), or 'S'

length—symbol, decimal digit, absexp, (2-12), or 'S'

key address—RX-Type Address, (2-12), or 'S'

block address—RX-Type Address or (2-12)

next address—RX-Type Address or (2-12)

MF=E
specifies that the execute form of the WRITE macro is used, and an existing
data event control block (specified in the decb address) is to be used by the
access method.

[label] WRITE decb address
,type
,[dcb address]
,[area address|'S']
,[length|'S']
,[key address|'S']
,[block address]
,[next address]
,MF=E

XLATE—Translate to and from ASCII (BSAM and QSAM)
The XLATE macro is used to convert the data in an area in virtual storage from
ASCII code to EBCDIC code or from EBCDIC code to ASCII code.

Refer to DFSMS/MVS Using Data Sets, SC26-4922 for the ASCII to EBCDIC and
EBCDIC to ASCII conversion codes. When converting EBCDIC code to ASCII
code, all EBCDIC code not having an ASCII equivalent is converted to X'1A'.

386 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 XLATE

When converting ASCII code to EBCDIC code, all ASCII code not having an
EBCDIC equivalent is converted to X'3F'. Because Version 3 ASCII uses only 7
bits in each byte, bit 0 is always set to 0 during EBCDIC to ASCII conversion and is
expected to be 0 during ASCII to EBCDIC conversion.

The XLATE macro may be issued in 24- or 31-bit addressing mode. When issued
in 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The format of the XLATE macro is:

area address—RX-Type Address, symbol, decimal digit, absexp,
(2-12), or (1)

specifies the address of the area to be converted. If issued in 31-bit addressing
mode, this area may reside above or below the 16MB line.

length—symbol, decimal digit, absexp, (2-12), or (0)
specifies the number of bytes to be converted.

TO={A|E}
specifies the type of conversion requested. If this parameter is omitted, E is
assumed. You can specify:

A specifies conversion from EBCDIC code to ASCII code.

E specifies conversion from ASCII code to EBCDIC code.

[label] XLATE area address
,length
[,TO={A|E }]

 Chapter 7. Non-VSAM Macro Descriptions 387

 XLATE

388 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Appendixes

 Copyright IBM Corp. 1976, 1999 389

390 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Appendix A. Macros Available by Access Method

Macro VSAM BDAM BISAM BPAM BSAM QISAM QSAM

Cannot
Use
SMS

Supports
31-Bit 1

ACB X X

BLDL X X

BLDVRP X X

BSP X X X

BUILD X X X X X X X

BUILDRCD X X

CHECK X X X X X X

CLOSE X X X X X X X X

CNTRL X X X

DCB X X X X X X N/A3

DCBD X X X X X X X

DCBE X X X X

DESERV X X

DLVRP X X

ENDREQ X X

ERASE X X

ESETL X X

EXLST X X

FEOV X X X

FIND X X

FREEBUF X X X X X

FREEDBUF X X X

FREEPOOL X X X X X X X

GENCB X X

GET X X X X

GETBUF X X X X X

GETPOOL X X X X X X X

| IHADCBE| X| X| X| X

ISITMGD X X X X X X X

MODCB X X

MRKBFR X X

MSGDISP X X X

NOTE X X X

OPEN X X X X X X X X

PDAB X

PDABD X

POINT X X X X

PRTOV X X X2

PUT X X X X

 Copyright IBM Corp. 1976, 1999 391

Macro VSAM BDAM BISAM BPAM BSAM QISAM QSAM

Cannot
Use
SMS

Supports
31-Bit 1

PUTX X X X

READ X X X X X4

RELEX X X

RELSE X X X

RPL X X

SCHBFR X X

SETL X

SETPRT X X X X4

SHOWCB X X

STOW X X

SYNADAF X X X X X X X

SYNADRLS X X X X X X X

SYNCDEV X X X X

TESTCB X X

TRUNC X X X

VERIFY X X

WAIT X X X X X

WRITE X X X X X4

WRTBFR X X

XLATE X X X

Notes:

1. For non-executable macros, this means it can reside above the 16 MB line. For executable macros, this indicates that the
macro issuer can be in 31-bit mode. The individual macro descriptions state if certain storage must be below the 16MB
line.

2. Can be issued but has no effect.

3. Non-executable macro. You can assemble the DCB macro into a program that resides above the 16MB line, but the
program must move it below the line before using it. Except for the DCBE, all areas that the DCB refers to, such as
EXLST, SYNAD, and EODAD, must be below the 16MB line.

4. The list form of the READ, WRITE, and SETPRT macro can be assembled into a program that resides above the 16MB
line, but the execute form of the macro cannot use it there. You can copy it to below the 16MB line so the copy can be
used, possibly in 31-bit mode. Do not issue the standard form of the macro in a program that resides above the 16MB
line.

392 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Appendix B. Non-VSAM Control Blocks

This section discusses:

� The format of the DECB which shows the status of the I/O operation.
� Data control block symbolic field names.

Status Information Following an Input/Output Operation
Following an I/O operation with a DCB, the control program makes certain status
information available to the problem program. This information is a 2-byte exception
code, or a 16-byte field of standard status indicators, or both.

Exception codes are provided in the data control block (DCB), or in the data event
control block (DECB). The DECB is described below, and the exception code is
within the block. If you code a DCBD macro, you can address the exception code
in a data control block as two 1-byte fields, DCBEXCD1 and DCBEXCD2.

Status indicators are available only to the error analysis routine designated by the
SYNAD entry in the data control block. A pointer to the status indicators is provided
either in the DECB (for BSAM, BPAM, and BDAM), or in register 0 (for QISAM and
QSAM). For more information on exception codes and status indicators, see
DFSMS/MVS Using Data Sets.

Data Event Control Block
A DECB is constructed as part of the expansion of READ and WRITE macros and
is used to pass parameters to the control program, help control the read or write
operation, and receive indications of the success or failure of the operation. The
DECB is named by the READ or WRITE macro, begins on a fullword boundary,
resides below the 16MB line, and contains the information shown in the following
illustration:

Offset from DECB
Address (Bytes)

Field Contents

BSAM and BPAM BISAM BDAM

0 ECB ECB ECB1

+4 Type Type Type

+6 Length Length Length

+8 DCB address DCB address DCB address

+12 Area address Area address Area address

+16 Address of status
indicators. Status
indicators reside
below the 16MB
line.

Logical record
address

Address of status
indicators. Status
indicators reside
below the 16MB
line.

+20 Key address Key address

+24 Exception code (2
bytes)

Block address

+28 Next address

 Copyright IBM Corp. 1976, 1999 393

Offset from DECB
Address (Bytes)

Field Contents

BSAM and BPAM BISAM BDAM

Note:

1. The control program returns exception codes in bytes +1 and +2 of the ECB.

Data Control Block Symbolic Field Names
The following describes data control block fields containing information that defines
the data characteristics and device requirements for a data set. Each of the fields
described shows the values that result from specifying various options in the DCB
macro. These fields can be referred to by the problem program by a DCBD macro
that creates a dummy control section (DSECT) for the data control block. Fields
that contain addresses are 4 bytes long and are aligned on a fullword boundary. If
the problem program inserts an address into a field, the address must be inserted
into the low-order 3 bytes of the field without changing the high-order byte.

The contents of some fields in the data control block depend on the device and
access method being used. A separate description is provided when the contents of
the field are not common to all device types and access methods.

For diagnosis purposes, DFSMS/MVS DFSMSdfp Diagnosis Reference describes
more fields.

Data Control Block—Common Fields

Offset
Bytes in
Length Field Name Description

26(1A) 2 DCBDSORG Data set organization.
 Code

 1000 000x IS Indexed sequential.
 0100 000x PS Physical sequential.
 0010 000x DA Direct organization.
 ...x xx.. Reserved bits.
 0000 001x PO Partitioned organization.
 1 U Unmovable—the data set contains location-dependent

information.
40(28) 8 DCBDDNAM Eight-byte name of the data definition statement that defines the

data set associated with this DCB. (Before DCB is opened.)
40(28) 2 DCBTIOT (After DCB is opened.) Offset from the TIOT origin to the

TIOELNGH field in the TIOT entry for the DD statement
associated with this DCB. Unsigned. Maximum value is just
below 64K.

42(2A) 2 DCBMACRF This field can only be referred to during and after OPEN. It is
common to all uses of the DCB and is created by moving the
DCBMACR field into this area.

45(2D) 3 DCBDEBA (After DCB is opened.) Address of field, DEBBASIC, in the
associated DEB.

48(30) 1 DCBOFLGS Flags used by open routine.
 ...1 OPEN has completed successfully.
 1... Set to 1 by problem program to indicate concatenation of unlike

attributes.

394 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

 0. Set to 0 by an I/O support function when that function takes a
user exit. It is set to 0 to inhibit other I/O support functions from
processing this DCB.

 1. Set to 1 on return from the I/O support function that took the exit.
50(32) 2 DCBMACR

(Before OPEN)
Macro reference before OPEN. Major macros and various options
associated with them. Used by the open routine to determine
access method. Used by the access method executed with other
parameters to determine which load modules are required. This
field is moved to overlay part of DCBDDNAM at OPEN time and
becomes the DCBMACRF field.

This field is common to all uses of the DCB, but each access
method must be referenced for its meaning. For EXCP, bit 0 is
always on. If not EXCP, then bit 0 is off and exactly one of the
next two bits is on.

Data Control Block—BPAM, BSAM, QSAM

Offset
Bytes in
Length Field Name Description

20(14) 4 DCBBUFCB Address of buffer pool control block.
20(14) 1 DCBBUFNO| Number of buffers required for this data set. Can range from 0 to

| 255. Default = 1 for PDSEs; various defaults
21(15) 3 DCBBUFCA Address of buffer pool control block. If the low-order bit is 1, this

field does not point to a buffer pool.
24(18) 2 DCBBUFL Length of buffer. Can range from 0 to 32760 bytes. Is based on

BLKSIZE.
32(20) 1 DCBHIAR
 0... .0.. No DCBE, no HIARCHY
 1... .0.. No DCBE, HIARCHY=1
 0... .1.. No DCBE, HIARCHY=0
 1... .1.. DCBDCBE points to DCBE, no HIARCHY
32(20) 1 DCBBFALN Buffer alignment:
 Code

 xx Reserved bits.
 10 D Doubleword boundary.
 01 F Fullword not a doubleword boundary, coded in the DCB

macro.
32(20) 1 DCBBFTEK Buffering technique:
 Code

 .xxx Reserved
bits.

 .100 S Simple buffering.
 .110 A QSAM locate mode processing of spanned records:

OPEN is to construct a record area if it automatically
builds buffers.

 Appendix B. Non-VSAM Control Blocks 395

Offset
Bytes in
Length Field Name Description

 .010 R BSAM create BDAM processing of unblocked spanned
records: Software track overflow. OPEN forms a
segment work area pool. However, WRITE uses a
segment work area to write a record as one or more
segments.

BSAM input processing of unblocked spanned records
with keys: Record offset processing. READ reads one
record segment into the record area. The first segment
of a record is preceded in the record area by the key.
Subsequent segments are at an offset equal to the key
length.

 1... XLRI being used to process a RECFM=DS or
RECFM=DBS format tape data set (QSAM).

33(21) 3 DCBEODA End-of-data address. Address of a user-provided routine to
handle end-of-data conditions. If the low-order bit is 1, this field
does not point to an end-of-data address.

36(24) 1 DCBRECFM Record format.
 Code

| | | 000.| Record format not available.
 001. D Format-D record.
 10.. ... F Fixed record length.
 01.. V Variable record length.
 11.. U Undefined record length.
 ..1. T Track overflow.
 ...1 B Blocked records. Cannot occur with undefined (U).
 1.... S Fixed length record format: Standard blocks. (No

truncated blocks or unfilled tracks are embedded in the
data set.) Variable length record format: Spanned
records.

 10. A ISO/ANSI control character at the beginning of each
record.

 01. M Machine control character at the beginning of each
record.

 00. No control character.
 1 Key length (KEYLEN) was specified in the DCB macro.

This bit is inspected by the open routine to prevent
overriding a specification of KEYLEN=0 by a nonzero
specification in the JFCB or data set label.

37(25) 3 DCBEXLSA Exit list. Address of a user-provided exit list control block.
42(2A) 2 DCBMACRF Macro reference after OPEN.

Contents and meaning are the same as those of the DCBMACR
field in the foundation segment before OPEN.

50(32) 2 DCBMACR
(Before OPEN)

Major macros and various options associated with them. Used by
the open routine to determine access method.

 Code

 Byte 1 BSAM—Input
 00.. Always zero for BSAM.
 ..1. R READ
 1.. P POINT (which implies NOTE).
 1. C CNTRL
 ...x x..x Reserved.
51(33) Byte 2 BSAM—Output
 00.. Always zero for BSAM.
 ..1. W WRITE

396 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

 1... L Load mode BSAM (create direct data set).
 1.. P POINT
 1. C CNTRL
 1 BSAM create BDAM processing of unblocked spanned

records, with BFTEK=R specified: The user's program
has provided a segment work area pool.

 ...x Reserved.
50(32) Byte 1 QSAM—Input
 0... Always zero for QSAM.
 .1.. G GET
 ..0. Always zero for QSAM.
 ...1 M Move mode.
 1... L Locate mode.
 1. C CNTRL
 1 D Data mode.
 x.. Reserved.
51(33) Byte 2 QSAM—Output
 0... Always zero for QSAM.
 .1.. P PUT
 ..0. Always zero for QSAM.
 ...1 M Move mode.
 1... L Locate mode.
 1. C CNTRL
 1 D Data mode.
 x.. Reserved.
50(32) Byte 1 BPAM—Input
 00.. Always zero for BPAM.
 ..1. R READ
 1.. P POINT (which implies NOTE).
 ...x x.xx Reserved bits.
51(33) Byte 2 BPAM—Output
 00.. Always zero for BPAM.
 ..1. W WRITE
 1.. P POINT (which implies NOTE).
 ...x x.xx Reserved bits.
52(34) 1 DCBOPTCD Option codes.
 Code

 1... W Write-validity check (DASD).
 .1.. U Allow a data check caused by a character that is not

valid. (Impact printer with UCS feature.)
Write-tape-immediate mode (3480 and 3490).

B Treat EOF and EOV labels as EOV labels which allows
SL or AL tapes to be read out of order. (Magnetic tape.)

 ..1. C Chained scheduling requested.
 ...1 H Input Tape Files: Requests the testing for and bypassing

of any embedded VSE checkpoint records found. (This
code can only be specified in a JCL statement.)

 1... Q An ASCII data set is to be processed. The tape does not
have to have ISO/ANSI labels.

 1.. Z Magnetic tape devices: Use reduced error recovery
procedure.

 1. T BSAM and QSAM only: user totaling.
 1 J Specifies that the first data byte in the output data line

will be a 3800 table reference character for dynamic
selection of character sets.

 Appendix B. Non-VSAM Control Blocks 397

Offset
Bytes in
Length Field Name Description

57(39) 3 DCBSYNA Address of user's synchronous error routine to be entered when a
permanent error occurs. If the low-order bit is 1, this field does
not point to an error routine.

62(3E) 2 DCBBLKSI Block size.

Access Method Interface

BSAM, BPAM Interface

Offset
Bytes in
Length Field Name Description

61(3D) 1 DCBCIND2 Condition indicators.
 1.. DCBCNCHS. Chain scheduling being supported. Set in OPEN.

Zero for DASD. May differ from OPTCD=C bit(DCBOPTC).
72(48) 1 DCBNCP Number of channel programs. Number of READ or WRITE

requests that can be issued before a CHECK. Maximum number:
255.

80(50) 1 DCBUSASI/
DCBLBP

ASCII tape. Block prefix.

 .1.. Block prefix is a 4-byte field containing the block length.
81(51) 1 DCBBUFOF Block prefix length.
82(52) 2 DCBLRECL Logical record length. For fixed-length blocked record format, the

presence of DCBLRECL allows BSAM to read truncated records.
For undefined records, this field contains block size.

 QSAM Interface

Offset
Bytes in
Length Field Name Description

61(3D) 1 DCBCIND2 Condition indicators.
 1.. DCBCNCHS. Chain scheduling being supported. Set in OPEN.

Zero for DASD. May differ from OPTCD=C bit(DCBOPTC).
| 80(50)| 1| DCBUSASI/
| DCBQSWS
| ASCII tape.

 .1.. Block prefix is a 4-byte field containing the block length.
(BUFOFF=L was specified).

| | |1..| DCBOPEN. QSAM parallel input processing.
81(51) 1 DCBBUFOF Block prefix length.

398 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

82(52) 2 DCBLRECL Format-F records: Record length. Format-U records: Block size.
Format-V records:

� Unspanned record format:

GET: PUTX; record length.
PUT: Actual or maximum record length.

� Spanned record format:

 Locate mode:
–GET: Segment length.
–PUT: Actual or minimum segment length.
Logical record interface:
– Before OPEN: Maximum logical record length.
– After GET: Record length.
– Before PUT: Actual or maximum record length.
– ISO/ANSI spanned record format with XLRI; length of
the record area in 'K' units (1024).

 Move mode:
– GET: Record length.
– PUT: Actual or maximum record length.

� Data mode, GET:

Data records up to 32752 bytes: Data length.
Data records exceeding 32752 bytes:
– Before OPEN: X'8000'
– After OPEN: Data length.

� Output mode, PUTX (output data set):

 Segment length.
84(54) 1 DCBEROPT Error option. Disposition of permanent errors if the user returns

from a synchronous error exit (DCBSYNAD), or if the user has no
synchronous error exit.

 100. ACC: Accept.
 010. SKP: Skip.
 001. ABE: Abnormal end of task.
 ...x xxxx Reserved bits.
90(5A) 2 DCBPRECL Block length, maximum block length, or data length.

Direct Access Storage Device Interface

Offset
Bytes in
Length Field Name Description

0(0) 4 DCBRELAD,
DCBDCBE

For partitioned data sets: DCBRELAD is TTRN (beginning
address) of a member. If the DCBHIAR bits at DCB offset 32 both
are on, this word points to the DCBE. If the DCBE exists, and the
data set is partitioned, member address is in DCBERELA in the
DCBE.

4(4) 1 DCBKEYCN Keyed block overhead.
5(5) 8 DCBFDAD Direct access address.
16(10) 1 DCBKEYLE Key length of the data set.
17(11) 1 DCBDEVT Device type.
 0010 Class of device. This code means DASD
 xxxx Type of DASD. Programs that do not test this byte run in more

environments. If a program tests this byte, it is best to test only
the first four bits (class).

 Appendix B. Non-VSAM Control Blocks 399

Offset
Bytes in
Length Field Name Description

18(12) 2 DCBTRBAL Current track balance. For TRKCALC macro. Not recommended
for arithmetic calculation.

Magnetic Tape Interface

Offset
Bytes in
Length Field Name Description

12(0C) 4 DCBBLKCT Number of blocks in the file on the current volume to the current
position.

16(10) 1 DCBTRTCH Tape recording technique for 7-track tape.
 Code

 0010 0011 E Even parity.
 0011 1011 T BCD/EBCDIC conversion.
 0001 0011 C Data conversion.
 0010 1011 ET Even parity and conversion.

Tape recording technique for a magnetic tape subsystem with
Improved Data Recording Capability. Use TRTCH to override the
system default value.

 0000 1000 COMP Record data in compacted format.
 0000 0100 NOCOMP Record data in standard format.
17(11) 1 DCBDEVT Device type.
 1000 Class of device. This code means magnetic tape.
 xxxx Type of magnetic tape.
18(12) 1 DCBDEN Tape density—3400 series magnetic tape units.
 Code

 0100 0011 1 556 BPI (7-track) N/A (9-track) N/A (18-track)
 1000 0011 2 800 BPI (7-track) 800 (9-track) N/A (18-track)
 1100 0011 3 N/A BPI (7-track) 1600 (9-track) N/A (18-track)
 1101 0011 4 N/A BPI (7-track) 6250 (9-track) N/A (18-track)

Card Reader, Card Punch Interface

Offset
Bytes in
Length Field Name Description

16(10) 1 DCBMODE,
DCBSTACK

 Code

 1000 C Column binary mode.
 0100 E EBCDIC mode.
 xxxx Stacker selection.
 0001 1 Stacker 1.
 0010 2 Stacker 2.
 0011 3 Stacker 3.
17(11) 1 DCBDEVT Device type.
 0100 Device class is unit record or TSO terminal.
 0100 0001 2540 Card Reader
 0100 0010 2540 Card Punch
 0100 0100 2501 Card Reader
 0100 0110 3505 Card Reader

400 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

 0100 1100 3525 Card Punch

 Printer Interface

Offset
Bytes in
Length Field Name Description

16(10) 1 DCBPRTSP Number indicating normal printer spacing.
 Code

 0000 0000 0 No spacing.
 0000 0001 1 Space one line.
 0001 0001 2 Space two lines.
 0001 1001 3 Space three lines.
17(11) 1 DCBDEVT Device type.
 0100 Device class is unit record or TSO terminal.
 0100 1000 1403 Printer
 0100 1001 3211 Printer
 0100 1011 3203 Printer
 0100 1101 Look at UCBTYP field or issue the DEVTYPE macro for the

actual type of printer.
 0100 1110 3800 Printing Subsystem
18(12) 1 DCBPRTOV Test-for-printer-overflow mask (PRTOV mask). If printer overflow

is to be tested for, the PRTOV macro sets the mask as follows:
 Mask

 0010 0000 9 Test for channel 9 overflow.
 0001 0000 12 Test for channel 12 overflow.
19(13) 1 DCBPRBYT
 xxxx xx.. Reserved.
 11 Bits to identify currently active table reference character when

3800 printer is operating under OPTCD=J.

TSO Terminal Interface

Offset
Bytes in
Length Field Name Description

17(11) 1 DCBDEVT Device type.
 X'4F' Device type and class are a TSO terminal (TERM=TS on the DD

statement)

Data Control Block—ISAM

Offset
Bytes in
Length Field Name Description

16(10) 1 DCBKEYLE Key length.
17(11) 1 DCBDEVT Device type.
20(14) 1 DCBBUFNO Number of buffers required for this data set: 0-255.
21(15) 3 DCBBUFCA Address of buffer pool control block.
24(18) 2 DCBBUFL Length of buffer: 0 − 32760 bytes.

 Appendix B. Non-VSAM Control Blocks 401

Offset
Bytes in
Length Field Name Description

32(20) 1 DCBBFALN Buffer alignment
 Code

 xx Reserved bits.
 10 D Doubleword boundary.
 01 F Fullword not a doubleword boundary, coded in the DCB

macro.
 11 F Fullword not a doubleword boundary, coded in the DD

statement.
33(21) 3 DCBEODA Address of a user-provided routine to handle end-of-data

conditions.
36(24) 1 DCBRECFM Record format.
 Code

 10.. F Fixed length records.
 01.. V Variable length records.
 11.. U Undefined length records.
 ..1. T Track overflow.
 ...1 B Blocked records. Cannot occur with undefined (U).
 1... S Standard records. No truncated blocks or unfilled tracks

are embedded in the data set.
 10. A ISO/ANSI control character.
 01. M Machine control character.
 00. No control character.
 1 Key length (KEYLEN) was specified in the DCB macro;

this bit is inspected by the open routine to prevent
overriding a specification of KEYLEN=0 by a nonzero
specification in the JFCB or data set label.

37(25) 3 DCBEXLSA Exit list. Address of a user-provided list.
42(2A) 2 DCBMACRF Macro reference after OPEN:

Contents and meaning are the same as those of the DCBMACR
field before OPEN.

50(32) 2 DCBMACR Macro reference before OPEN: specifies the major macros and
various options associated with them. Used by the open routine to
determine access method. Used by the access method executors
with other parameters to determine which load modules are
required.

 Code

50(32) Byte 1 BISAM
 00.0 0... Always zero for BISAM.
 ..1. R READ
 1.. S Dynamic buffering.
 1. C CHECK
 x Reserved bit.
51(33) Byte 2 BISAM
 00.0 0000 Always zero for BISAM.
 ..1. W WRITE
50(32) Byte 1 QISAM
 0.0. .0.. Always zero for BISAM.
 .1.. G GET
 ...1 M Move mode of GET.
 1... L Locate mode for GET.
 xx Reserved bit.
51(33) Byte 2 QISAM
 1... S SETL
 .1.. P PUT or PUTX

402 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

 ..0. Always zero for QISAM.
 ...1 M Move mode of PUT.
 1... L Locate mode for PUT.
 1.. U Update in place (PUTX).
 1. K SETL by key.
 1 I SETL by ID.
52(34) 1 DCBOPTCD Option codes:
 Code

 1... W Write-validity check.
 .1.. U Full-track index write.
 ..1. M Master indexes.
 ...1 I Independent overflow area.
 1... Y Cylinder overflow area.
 1. L Delete option.
 1 R Reorganization criteria.
 x.. Reserved bit.
53(35) 1 DCBMAC Extension of the DCBMACRF field for ISAM.
 Code

 xxxx ...x Reserved bits.
 1... U Update for read.
 1.. U Update type of write.
 1. A Add type of write.
54(36) 1 DCBNTM Number of tracks that determines the development of a master

index. Maximum permissible value: 99.
55(37) 1 DCBCYLOF The number of tracks to be reserved on each prime data cylinder

for records that overflow from other tracks on that cylinder. To
determine how to calculate the maximum number, see the section
on allocating space for an indexed sequential data set in
DFSMS/MVS Using Data Sets.

56(38) 4 DCBSYNAD Address of user's synchronous error routine to be entered when
uncorrectable errors are detected in processing data records.

60(3C) 2 DCBRKP Relative position of the first byte of the key in each logical record.
Maximum permissible value: logical record length minus key
length.

62(3E) 2 DCBBLKSI Block size.
64(40) 4 DCBMSWA Address of the storage work area reserved for use by the control

program when new records are being added to an existing data
set. The DCBMSWA field contains significant information only
when the data set is opened for BISAM.

68(44) 2 DCBSMSI Number of bytes in area reserved to hold the highest level index.
The DCBSMSI field contains significant information only when the
data set is opened for BISAM.

70(46) 2 DCBSMSW Number of bytes in work area used by control program when new
records are being added to the data set. The DCBSMSW field
contains significant information only when the data set is opened
for BISAM.

72(48) 1 DCBNCP Number of copies of the READ-WRITE (type K) channel
programs that are to be established for this data control block (99
maximum).

73(49) 3 DCBMSHIA Address of the storage area holding the highest level index.
80(50) 1 DCBEXCD1 First byte in which exceptional conditions detected in processing

data records are reported to the user.
 1... Lower key limit not found.
 .1.. Invalid device address for lower limit (QISAM only). Record length

check (BISAM only).

 Appendix B. Non-VSAM Control Blocks 403

Offset
Bytes in
Length Field Name Description

 ..1. Space not found.
 ...1 Invalid request.
 1... Uncorrectable input error.
 1.. Uncorrectable output error (BISAM only). Block could not be

reached (BISAM only).
 1. Block could not be reached (input) (QISAM only). Overflow record

(BISAM only).
 1 Block could not be reached (update) (QISAM only). Duplicate

record (BISAM only).
81(51) 1 DCBEXCD2 Second byte in which exceptional conditions detected in

processing data records are reported to the user (QISAM only).
 1... Sequence check.
 .1.. Duplicate record.
 ..1. DCB closed when error was detected.
 ...1 Overflow record.
 1... PUT: length field of record larger than length indicated in

DCBLRECL.
 xxx Reserved bits.
82(52) 2 DCBLRECL Logical record length for fixed-length record formats.

Variable-length record formats: maximum logical record length or
an actual logical record length changed dynamically by the user
when creating the data set.

150(96) 2 DCBNCRHI Number of storage locations needed to hold the highest level
index.

197(C5) 1 DCBOVDEV Device type for independent overflow.

Data Control Block—BDAM

Offset
Bytes in
Length Field Name Description

16(10) 1 DCBKEYLE Key length.
17(11) 3 DCBREL Maximum number of tracks or blocks based on the amount of

space allocated for this data set.
20(14) 1 DCBBUFNO Number of buffers required for this data set. Can range from 0 to

255.
21(15) 3 DCBBUFCA Address of buffer pool control block or of dynamic buffer pool

control block.
24(18) 2 DCBBUFL Length of buffer. Can range from 0 to 32760.
32(20) 1 DCBBFALN Buffer alignment:
 10 Doubleword boundary.
 01 Fullword not a doubleword boundary, coded in the DCB macro.
 11 Fullword not a doubleword boundary, coded in the DD statement.
 .x.x x... Reserved bits.
32(20) 1 DCBBFTEK Buffering technique.
 Code

 ..1. R Unblocked spanned records: Variable spanned record
format. Open forms a segment work area pool. The
number of segment work areas is determined by
DCBBUFNO. WRITE uses a segment work area to write
a record as one or more segments. READ uses a
segment work area to read a record that was written as
one or more segments.

36(24) 1 DCBRECFM Record format.

404 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Offset
Bytes in
Length Field Name Description

 Code

 10.. F Fixed record length.
 01.. V Variable record length.
 11.. U Undefined record length.
 ..1. T Track overflow.
 ...1 B Blocked (allowed only with V).
 1... S Spanned (allowed only with V).
 00. Always zeros.
 1 Key length (KEYLEN) was specified in the DCB macro.

This bit is inspected by the open routine to prevent
overriding a specification of KEYLEN=0 by a nonzero
specification in the JFCB or data set label.

37(25) 3 DCBEXLSA Exit list. Address of a user-provided exit list control block.
42(2A) 2 DCBMACRF Macro reference after OPEN.

Contents and meaning are the same as DCBMACR before
OPEN.

50(32) 2 DCBMACR Macro reference before OPEN: major macros and various options
associated with them that will be used.

50(32) Byte 1 Code

 00.. Always zero for BDAM.
 ..1. R READ
 ...1 K Key segment with READ.
 1... I ID argument with READ.
 1.. S System provides area for READ (dynamic buffering).
 1. X Read exclusive.
 1 C CHECK macro.
51(33) Byte 2 Code

 00.. Always zero for BDAM.
 ..1. W WRITE
 ...1 K Key segment with WRITE.
 1... I ID argument with WRITE.
 x.. Reserved bit.
 1. A Add type of WRITE.
 1 Unblocked spanned records, with BFTEK=R specified

and no dynamic buffering: The user's program has
provided a segment work area pool.

52(34) 1 DCBOPTCD Option codes:
 Code

 1... W Write-validity check.
 .1.. Track overflow.
 ..1. E Extended search.
 ...1 F Feedback.
 1... A Actual addressing.
 1.. Dynamic buffering.
 1. Read exclusive.
 1 R Relative block addressing.
56(38) 4 DCBSYNAD Address of SYNAD (synchronous error) routine.
62(3E) 2 DCBBLKSI Block size.
81(51) 3 DCBLIMCT Number of tracks or number of relative blocks to be searched

(extended search option).

 Appendix B. Non-VSAM Control Blocks 405

| Data Control Block Extension (DCBE)
| A DCBE is defined by a DCBE macro and mapped by an IHADCBE macro.

| Offset

| Length or
| Bit
| Pattern| Field Name| Description

| 0(0)| | DCBE| DSECT name.
| 0(0)| 4| DCBEID| DCBE eyecatcher ‘DCBE’
| 4(4)| 2| DCBELEN| Length of DCBE.
| 6(6)| 2| | Reserved.
| 8(4)| 4| DCBEDCB| DCB address. Set by system. Must be zero when OPEN is
| issued. Set to zero at CLOSE.
| 12(C)| 4| DCBERELA| Partitioned data set — address (in the form TTRN) of member
| currently used.
| 16(10)| 1| DCBEFLG1| Flags set by system.
| | 1...| DCBEOPEN| DCBE has been successfully opened.
| | .1..| DCBEMD31| User may call access method in 31-bit mode and, if QSAM,
| system will honor DCBEBU31. Set by system before DCB OPEN
| exit.
| | ..xx xxxx| | Reserved.
| 17(11)| 1| DCBEFLG2| Flags set by user.
| | 1...| DCBEBU31| RMODE31=BUFF. QSAM buffers may be above 16 MB line and
| CLOSE will free them. System may test this during concatenation.
| This will be ignored for BSAM and user supplied buffers.
| | .1..| DCBENEOD| PASTEOD=YES. The HWM of the data set is to be ignored on
| input for striped data sets.
| | ...1| DCBENVER| NOVER=YES. OPEN is to bypass the verification of consistent
| stripes of a striped data set.
| | 1...| DCBEGSIZ| GETSIZE=YES. OPEN is to calculate the size of the data set
| (RBNs) and store this number in DCBESIZE and DCBEXSIZ.
| | ..x. .xxx| | Reserved bits.
| 18(12)| 2| DCBENSTR| Number of stripes for a striped data set. Zero if data set is not
| striped. Set by OPEN or when switching between data sets in a
| concatenation. Set before OPEN or EOV exit is called.
| 20(14)| 12| | Reserved.
| 32(20)| 8| DCBEXSIZ| Number of blocks in current data set. Set by system when
| DCBEGSIZ is set.
| 32(20)| 4| DCBESIZO| High order word of DCBEXSIZ.
| 36(24)| 4| DCBESIZE| Number of blocks in current data set. Set by system when
| DCBEGSIZ is set.
| 40(28)| 4| DCBEEODA| Address of user provided end-of-data routine. May reside above
| or below the line. Used instead of DCBEODAD. Will be zero if no
| address is given.
| 44(2C)| 4| DCBESYNA| Address of user provided SYNAD routine. May reside above or
| below the line. Used instead of DCBSYNAD. Will be zero if no
| address is given.
| 48(30)| 6| | Reserved.
| 54(36)| 1| DCBEMACC| MULTACC. Accumulation number multiplier.
| 55(37)| 1| DCBEMSDN| MULTSDN. Multiplier of system determined NCP.
| 56(38)| | DCBEMINL| Minimal length of DCBE in any release.
| 56(38)| | DCBEEND| End of DCBE. This label is always after the last DCBE field.

406 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Appendix C. Control Characters

Each logical record (except with VSAM), in all record formats, can contain an
optional control character. This control character controls stacker selection on a
card punch or card read punch, or printer spacing and skipping.

 If a record containing an optional control character is directed to any other device,
it is considered to be the first data byte, and it does not cause a control function to
occur.

In format-F and format-U records, the optional control character must be in the first
byte of the logical record. In format-V or format-D records, the optional control
character must be in the fifth byte of the logical record, immediately following the
record descriptor word of the record.

Two control character options are available: machine code and extended code
defined by ANSI. Code the control character in the RECFM parameter of the DCB
macro. If either option is specified in the data control block, you must include a
control character in each record. Other spacing or stacker selection options also
specified in the data control block are ignored.

 Machine Code
The record format field in the data control block indicates that the machine code
control character has been placed in each logical record. If the record is written, the
appropriate byte must contain the command code bit configuration specifying both
the write and the desired carriage or stacker select operation.

The machine code control characters for a printer are:

Print—Then Act Action
Act Immediately
without Printing

X'01' Print only (no space, overprint)

X'09' Space 1 line X'0B'

X'11' Space 2 lines X'13'

X'19' Space 3 lines X'1B'

X'5A' The rest of the record is page mode data.
This requires the use of the Print Services
Facility (PSF) and a page mode printer
such as an IBM 3800, IBM 3900, IBM
3820, or IBM 3827. The data may be
sysout.

X'89' Skip to channel 1 X'8B'

X'91' Skip to channel 2 X'93'

X'99' Skip to channel 3 X'9B'

X'A1' Skip to channel 4 X'A3'

X'A9' Skip to channel 5 X'AB'

X'B1' Skip to channel 6 X'B3'

 Copyright IBM Corp. 1976, 1999 407

The machine code control characters for a card punch device are as follows:

Other command codes for specific devices are contained in IBM System Reference
Library publications describing the control units or devices.

Print—Then Act Action
Act Immediately
without Printing

X'B9' Skip to channel 7 X'BB'

X'C1' Skip to channel 8 X'C3'

X'C9' Skip to channel 9 X'CB'

X'D1' Skip to channel 10 X'D3'

X'D9' Skip to channel 11 X'DB'

X'E1' Skip to channel 12 X'E3'

Control Code Action

X'01' Select stacker 1

X'41' Select stacker 2

X'81' Select stacker 3

 ISO/ANSI
In place of machine code, you can specify control characters defined by ISO/ANSI.
These characters must be represented in EBCDIC code.

ISO/ANSI control characters for a printer are as follows:

Code Action before Printing a Line

b Space one line (blank code)

0 Space two lines

- Space three lines

+ Suppress space (overprint existing line)

1 Skip to channel 1

2 Skip to channel 2

3 Skip to channel 3

4 Skip to channel 4

5 Skip to channel 5

6 Skip to channel 6

7 Skip to channel 7

8 Skip to channel 8

9 Skip to channel 9

A Skip to channel 10

B Skip to channel 11

C Skip to channel 12

408 DFSMS/MVS V1R5 Macro Instructions for Data Sets

ISO/ANSI control characters for a card punch device are as follows:

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or V, depending on the device being
used; no error indication is returned.

Code Action before Printing a Line

X'5A' The rest of the record is page mode data. This requires the use of the
Print Services Facility (PSF) and a page mode printer such as an IBM
3800, IBM 3900, IBM 3820, or IBM 3827. The data may be sysout.

Code Action after Punching a Card

V Select punch pocket 1

W Select punch pocket 2

ISO/ANSI Record Control Word and Segment Control Word

Conversion of ISO/ANSI Record Control Word
The ISO/ANSI record control word (RCW) is expressed in ASCII characters and is
4 bytes long (see Figure 51). Note that the RCW is different from the code in the
IBM record descriptor word (RDW). The RDW, expressed in binary, is the internal
data management equivalent of the ISO/ANSI RCW.

| Note: For ISO/ANSI V4 tapes created specifying a CCSID other than ASCII, the
| RCW will continue to be expressed in ASCII.

 D/DB RDW ISO/ANSI RCW
 ┌─┌─────────────┐─┐Output Translation ┌─┌─────────────┐─┐

│ │ L │ ├───────────────────5 │ │ n │ │ Length in
│ ├─────────────┤ │ │ ├─────────────┤ │ ASCII
│ │ L │ ├─ Binary Value │ │ n │ ├─ Numeric
│ ├─────────────┤ ┘ │ ├─────────────┤ │ Characters
│ │ ð │ │ │ n │ │
│ ├─────────────┤ │ ├─────────────┤ │
│ │ ð │ │ │ n │ │

 │ ├─────────────┤ Optional Control │ ├─────────────┤─┘ Optional Control
│ │ a │ Character │ │ a │ Character

 │ ├─────────────┤ │ ├─────────────┤
LL─┤ │ │ nnn─┤ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ Data │ │ │ Data │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ Input Translation └─│ │
 └─└─────────────┘ %────────────────────── └─────────────┘

Figure 51. Conversion of ISO/ANSI Record Control Word to D/DB Record Descriptor Word

 Appendix C. Control Characters 409

Conversion of ISO/ANSI Segment Control Word
The ISO/ANSI segment control word (SCW) is expressed in ASCII characters and
is 5 bytes in length (see Figure 52). Note that the SCW is different from the code in
the IBM segment descriptor word (SDW). The SDW is the internal data
management equivalent of the ISO/ANSI SCW. Only 4 bytes are used by data
management, but the user buffer area must accommodate an extra byte to allow for
conversion from the ISO/ANSI SCW. The SDW is expressed in binary.

 DS/DBS RDW ┐ ISO/ANSI SCW
 ┌─────────────┐ Output Translation ┌─┌─────────────┐

│ Reserved │ ─────────────────┼──5 │ │ S | Spanning Indicator
 ┌─├─────────────┤─┐ │ │ ├─────────────┤─┐

│ │ L │ │ │ │ │ n │ │ Length in
│ ├─────────────┤ ├─ Binary Value │ │ ├─────────────┤ ├─ ASCII
│ │ L │ │ │ │ │ n │ │ Numeric
│ ├─────────────┤─┘ │ │ ├─────────────┤ │ Characters
│ │ C | Segment Position| | | n | |
│ ├─────────────┤ Indicator │ │ ├─────────────┤ │
│ │ ð │ │ │ │ n │ │

 │ ├─────────────┤ │ │ ├─────────────┤─┘
LL─┤ │ │ │ nnnn─┤ │ │
 │ │ │ ├─ LL+1 │ │ │
 │ │ │ │ │ │ │
 │ │ │ │ │ │ │
 │ │ │ │ │ │ │
 │ │ │ │ │ │ │
 │ │ Data │ │ │ │ Data │
 │ │ │ │ │ │ │
 │ │ │ │ │ │ │
 │ │ │ │ │ │ │
 │ │ │ │ Input Translation └─│ │
 └ └─────────────┘ ─┘%────────────────────── └─────────────┘

C values for SDW (2 low order bits)

 ðð = only segment of record
 ð1 = first segment of record
 11 = intermediate segment of record
 1ð = last segment of record

S values for SCW (ASCII characters)

 ð = only segment of record
 1 = first segment of record
 2 = intermediate segment of record
 3 = last segment of record

Figure 52. Conversion of ISO/ANSI Segment Control Word to DS/DBS Segment Descriptor Word

410 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 GETIX

Appendix D. Index Processing Macros

This appendix is intended to help you to diagnose problems in the index of a VSAM
data set.

You can use the macros documented here to examine the contents of the index of
a key-sequenced data set, if your index is damaged or if pointers are lost. Two
ways to access directly the index component of a key-sequenced data set or
variable-length RRDS are:

� Open the data set as a cluster and use the GETIX and PUTIX macros to
process a control interval.

� Open the index component as a data set and use the GET and PUT macros to
process the index component as an entry-sequenced data set.

You should not attempt to duplicate or substitute the index processing done by
VSAM during normal access to data records. It is best to let VSAM maintain all
indexes.

GETIX—Retrieve an Index Record
The format of the GETIX macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the GETIX
macro.

RPL=address
specifies the address of the request parameter list that defines this GETIX
request. You may specify the address in register notation (using a register from
1 through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for GETIX:

OPTCD=(CNV
 ,DIR
 ,{NUP|UPD|NSP}
 ,{LOC|MVE})

GETIX can be issued either for update or not for update; OPTCD=NSP is
interpreted as OPTCD=NUP.

With OPTCD=MVE, AREALEN must be at least index control interval size.

ARG=address
The search argument for GETIX is the RBA of a control interval.

To process the index of a key-sequenced data set with GETIX, you must open the
cluster with:

ACB MACRF=(CNV,...)

[label] GETIX RPL=address

 Copyright IBM Corp. 1976, 1999 411

 PUTIX

PUTIX—Store an Index Record
The format of the PUTIX macro is:

label
specifies 1 to 8 characters that provide a symbolic address for the PUTIX
macro.

RPL=address
specifies the address of the request parameter list that defines this PUTIX
request. You may specify the address in register notation (using a register from
1 through 12, enclosed in parentheses) or specify it with an expression that
generates a valid relocatable A-type address constant.

The following RPL parameters and subparameters are required for PUTIX:

OPTCD=(CNV
 ,DIR
 ,UPD
 ,MVE)

OPTCD=LOC is not allowed.

AREALEN
must be at least index control interval size.

The contents of a control interval must previously have been retrieved for update
through GETIX.

To process the index of a key-sequenced data set with GETIX, you must open the
cluster with:

ACB MACRF=(CNV,...)

[label] PUTIX RPL=address

412 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Appendix E. Selecting Logical Record Lengths and Block
Sizes

 Device Capacities
The following information provides a guide to coding the block size (BLKSIZE) and
logical record length (LRECL) operands in the DCB macro. These values can be
used to determine the maximum block size and logical record length for a given
device, and to determine the optimum blocking factor when records are to be
blocked.

 Printers
The following table shows the record length that can be specified for the various
printers.

Figure 53. Record length for printers. Sometimes two values are shown; except for the
3800, the larger of the two values requires that an optional feature be installed on the printer
being used. If the optional control character is specified to control spacing and skipping, the
record length is specified as one greater than the actual data length (the control character is
not part of the data record).

Printer Record Length (Bytes)

1403 Printer 120 or 132

3203 Printer 132

3211 Printer 132 or 150

3525 Card Punch, Print Feature 64

3800 Printing Subsystem 136 bytes for 10 pitch
163 bytes for 12 pitch
204 bytes for 15 pitch

4245 Printer 132

4248 Printer 132 or 168

3262 Model 5 Printer

132

6262 Printer 133

AFP1 Device
3825-001
3827-001
3828-001
3835-001
3900-001

32,760 1

Note:

1. Advanced function printers (page printers) can place a byte anywhere on a page
and are not limited to formatted print lines. Therefore, the printers can use the full
32,760 byte records that the various systems support.

When printing formatted print lines, the length of the line varies depending on the
size of the font and paper.

 Copyright IBM Corp. 1976, 1999 413

Card Readers and Card Punches
Format F, V, or U records are accepted by readers and punchers, but the logical
record length for a card reader or card punch is fixed at 80 bytes. If the optional
control character is specified, the logical record length is 81 (the control character is
not part of the data record). If card image mode is used, the buffer required to
contain the data must be 160 bytes.

Magnetic Tape Units
Tape Block Capacity (Bytes)

3420 Magnetic Tape Units
(7 track and 9 track)

32,760

3430 Magnetic Tape Units 32,760

3480 Magnetic Tape Subsystem
(with or without compaction mode)

32,760

3490 and 3490E Magnetic Tape Subsystem
(with or without compaction mode)

32,760

Direct Access Storage Devices
Each record written on direct access storage devices requires some device
overhead.

Use the TRKCALC macro to calculate the exact number of bytes required for each
data block including the space required for device overhead. For more information
on how to use the TRKCALC macro, see DFSMS/MVS DFSMSdfp Advanced
Services .

If the TRKCALC macro cannot be used and space calculations must be performed
manually, refer to the appropriate Direct Access Storage Reference Summary.

The following tables will help you estimate your space needs.

Figure 54 lists the physical characteristics of DASDs. Use the largest block size
that uses the least amount of space on the track. Because the largest record
supported by the access methods is 32760 bytes, the most efficient block size is
not necessarily the maximum data length that can fit on a track.

For example, to maximize use of a 3380 track, 98.9% of the space available on a
track can be used by writing two records of 23476 bytes each. The most efficient
block size for the 3390 would be 27998 bytes; two of these blocks would fit on a
3390 track.

The maximum data length for a track multiplied by the number of tracks per
cylinder produces the number of bytes available per cylinder for a device.

Similarly, the number of bytes per cylinder multiplied by the number of cylinders per
volume produces the total number of bytes available for a device.

414 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Figure 54. DASD Physical Characteristics

Type

Most
Efficient
Block Size

Maximum
Data
Length/Track Trk/Cyl

Bytes/Cyl
Avail for
User
Records Cyl/Vol

Bytes/Device
Avail for User
Records

3380 Models
AD4, BD4,
AJ4, BJ4, and
CJ21

23,4764 47,476 15 712,140 885 630,243,900

3380 Models
AE4 and BE42

23,4764 47,476 15 712,140 1,770 1,260,487,800

3380 Models
AK4 and BK43

23,4764 47,476 15 712,140 2,655 1,890,731,700

3390 Model 1 27,9984 56,664 15 849,960 1,113 946,005,480
3390 Model 2 27,9984 56,664 15 849,960 2,226 1,892,010,960
3390 Model 3 27,9984 56,664 15 849,960 3,339 2,838,016,440
3390 Model 9 27,9984 56,669 15 849,960 10,017 8,514,049,320
9345 Model 1 22,9284 46,456 15 696,840 1,440 1,003,449,600
9345 Model 2 22,9284 46,456 15 696,840 2,156 1,502,387,040

Notes:

 1. single capacity

 2. double capacity

 3. triple capacity

 4. Two-record format

VSAM Usage of Space for Selected Devices
The following tables show how much space VSAM uses for various DASDs. See
Figure 54 on page 414 for the physical characteristics of DASDs.

Use these charts to select control interval sizes that make the most efficient use of
storage. Refer to “Control Interval Size for Selected Devices” on page 419 to
determine if the control interval size is equal to the physical block size of the data
component.

Remember that the physical block size for the data component may be different
from the physical block size for the index component, even if the same control
interval size is selected for both. Thus, while the physical block size for the index
component is always equal to the control interval size, the physical block size for
the data component may be smaller than the control interval size. Multiple physical
blocks may compose one control interval for the data component.

For example, if a facility is using the 3390 DASD and a control interval size of
14336 is selected for both the index and data components, then the index
component will have a physical block size of 14336 (one physical block per control
interval) and the data will have a physical block size of 7196 (two physical blocks
per control interval).

Note: If direct, sequential, or partitioned data sets, or PDSEs are used, all without
keys, and the size of the block matches the size of one of the control

 Appendix E. Selecting Logical Record Lengths and Block Sizes 415

intervals given in these tables, then the corresponding information in the
data columns can be used.

If the exact block size is not listed, see the appropriate Direct Access Storage
Reference Summary.

VSAM Usage of 3380 DASD Space

Figure 55. VSAM Usage of 3380 DASD Space

CI Size

Block Size
Physical
Block/Track

CI/CA

%
Track
Used Bytes/Track

Data Index Data Index Data Index Data Index

512 512 512 46 46 690 49.61 49 23,552 23,552

1,024 1,024 1,024 31 31 465 66.86 66 31,744 31,744

1,536 1,536 1,536 23 23 345 74.41 74 35,328 35,328

2,048 2,048 2,048 18 18 270 77.65 77 36,864 36,864

2,560 2,560 2,560 15 15 225 80.88 80 38,400 38,400

3,072 3,072 3,072 13 13 195 84.12 84 39,936 39,936

3,584 3,584 3,584 11 11 165 83.04 83 39,424 39,424

4,096 4,096 4,096 10 10 150 86.28 86 40,960 40,960

4,608 4,608 4,608 9 9 135 87.35 87 41,472 41,472

5,120 5,120 5,120 8 8 120 86.28 86 40,960 40,960

5,632 5,632 5,632 7 7 105 83.04 83 39,424 39,424

6,144 6,144 6,144 7 7 105 90.59 90 43,008 43,008

6,656 6,656 6,656 6 6 90 84.12 84 39,936 39,936

7,168 7,168 7,168 6 6 90 90.59 90 43,008 43,008

7,680 7,680 7,680 5 5 75 80.88 80 38,400 38,400

8,192 8,192 8,192 5 5 75 86.28 86 40,960 40,960

10,240 10,240 10,240 4 4 60 86.28 86 40,960 40,960

12,288 6,144 12,288 7 3 52 90.59 77 43,008 36,864

14,336 14,336 14,336 3 3 45 90.59 90 43,008 43,008

16,384 8,192 16,384 5 2 37 86.28 69 40,960 32,768

18,432 6,144 18,432 7 2 35 90.59 77 43,008 36,864

20,480 20,480 20,480 2 2 30 86.28 86 40,960 40,960

22,528 22,528 22,528 2 2 30 94.90 94 45,056 45,056

24,576 6,144 24,576 7 1 26 90.59 51 43,008 24,576

26,624 6,656 26,624 6 1 22 84.12 56 39,936 26,624

28,672 14,336 28,672 3 1 22 90.59 60 43,008 28,672

30,720 6,144 30,720 7 1 21 90.59 64 43,008 30,720

32,768 8,192 32,768 5 1 18 86.28 69 40,960 32,768

416 DFSMS/MVS V1R5 Macro Instructions for Data Sets

VSAM Usage of 3390 DASD Space

Figure 56. VSAM Usage of 3390 DASD Space

CI Size

Block Size
Physical
Block/Track

CI/CA

%
Track
Used Bytes/Track

Data Index Data Index Data Index Data Index

512 512 512 49 49 735 44.28 43 25,088 25,088

1,024 1,024 1,024 33 33 495 59.64 58 33,792 33,792

1,536 1,536 1,536 26 26 390 70.48 69 39,936 39,936

2,048 2,048 2,048 21 21 315 75.90 74 43,008 43,008

2,560 2,560 2,560 17 17 255 76.80 75 43,520 43,520

3,072 3,072 3,072 15 15 225 81.32 79 46,080 46,080

3,584 3,584 3,584 13 13 195 82.22 80 46,592 46,592

4,096 4,096 4,096 12 12 180 86.74 85 49,152 49,152

4,608 4,608 4,608 10 10 150 81.32 79 46,080 46,080

5,120 5,120 5,120 9 9 135 81.32 79 46,080 46,080

5,632 5,632 5,632 9 9 135 89.45 87 50,688 50,688

6,144 6,144 6,144 8 8 120 86.74 85 49,152 49,152

6,656 6,656 6,656 7 7 105 82.22 80 46,592 46,592

7,168 7,168 7,168 7 7 105 89.50 86 50,176 50,176

7,680 7,680 7,680 6 6 90 81.32 79 46,080 46,080

8,192 8,192 8,192 6 6 90 86.74 85 49,152 49,152

10,240 10,240 10,240 5 5 75 90.36 88 51,200 51,200

12,288 12,288 12,288 4 4 60 86.74 85 49,152 49,152

14,336 7,168 14,336 7 3 52 89.50 74 50,176 43,008

16,384 16,384 16,384 3 3 45 86.74 85 49,152 49,152

18,432 18,432 18,432 3 3 45 97.59 95 55,296 55,296

20,480 10,240 20,480 5 2 37 90.36 70 51,200 40,960

22,528 5,632 22,528 9 2 33 89.45 77 50,688 45,056

24,576 24,576 24,576 2 2 30 86.74 85 49,152 49,152

26,624 26,624 26,624 2 2 30 93.97 92 53,248 53,248

28,672 7,168 28,672 7 1 26 89.50 49 50,176 28,672

30,720 10,240 30,720 5 1 25 90.36 53 51,200 30,720

32,768 16,384 32,768 3 1 22 86.74 56 49,152 32,768

 Appendix E. Selecting Logical Record Lengths and Block Sizes 417

VSAM Usage of 9345 DASD Space

Figure 57. VSAM Usage of 9345 DASD Space

CI Size

Block Size
Physical
Block/Track

CI/CA

%
Track
Used Bytes/Track

Data Index Data Index Data Index Data Index

512 512 512 41 41 615 45.19 43 20,992 20,992

1,024 1,024 1,024 28 28 420 61.72 59 28,672 28,672

1,536 1,536 1,536 21 21 315 69.43 66 32,256 32,256

2,048 2,048 2,048 17 17 255 74.94 72 34,816 34,816

2,560 2,560 2,560 14 14 210 77.15 74 35,840 35,840

3,072 3,072 3,072 12 12 180 79.35 76 36,864 36,864

3,584 3,584 3,584 11 11 165 84.86 81 39,424 39,424

4,096 4,096 4,096 10 10 150 88.17 84 40,960 40,960

4,608 4,608 4,608 8 8 120 79.35 76 36,864 36,864

5,120 5,120 5,120 8 8 120 88.17 84 40,960 40,960

5,632 5,632 5,632 7 7 105 84.86 81 39,424 39,424

6,144 6,144 6,144 6 6 90 79.35 76 36,864 36,864

6,656 6,656 6,656 6 6 90 85.96 82 39,936 39,936

7,168 7,168 7,168 6 6 90 92.58 89 43,008 43,008

7,680 7,680 7,680 5 5 75 82.66 79 38,400 38,400

8,192 8,192 8,192 5 5 75 88.17 84 40,960 40,960

10,240 10,240 10,240 4 4 60 88.17 84 40,960 40,960

12,288 4,096 12,288 10 3 50 88.17 76 40,960 36,864

14,336 14,336 14,336 3 3 45 92.58 89 43,008 43,008

16,384 8,192 16,384 5 2 37 88.17 67 40,960 32,768

18,432 18,432 18,432 2 2 30 79.35 76 36,864 36,864

20,480 20,480 20,480 2 2 30 88.17 84 40,960 40,960

22,528 22,528 22,528 2 2 30 96.99 93 45,056 45,056

24,576 8,192 24,576 5 1 25 88.17 50 40,960 24,576

26,624 6,656 26,624 6 1 22 85.96 55 39,936 26,624

28,672 14,336 28,672 3 1 22 92.58 59 43,008 28,672

30,720 10,240 30,720 4 1 20 88.17 63 40,960 30,720

32,768 8,192 32,768 5 1 18 88.17 67 40,960 32,768

418 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Control Interval Size for Selected Devices
For each DASD, the following table identifies the control interval sizes that exactly
fit one physical block for the data component. An X in the column indicates that for
that device and the control interval size listed, the size of the control interval is
equal to the physical block size of the data component.

If the chart does not show an X for a control interval size for a device, the control
interval holds more than one block from the data component, and the control
interval size listed is a multiple of the data component physical block size.

The control interval size is always equal to the index component physical block
size.

Figure 58 (Page 1 of 2). Control Interval Size

CI Size Device

33801 33902 93453

512 X4 X X

1,024 X X X

1,536 X X X

2,048 X X X

2,560 X X X

3,072 X X X

3,584 X X X

4,096 X X X

4,608 X X X

5,120 X X X

5,632 X X X

6,144 X X X

6,656 X X X

7,168 X X X

7,680 X X X

8,192 X X X

10,240 X X X

12,288 X

14,336 X X

16,384 X

18,432 X X

20,480 X X

22,528 X X

24,576 X

26,624 X

 Appendix E. Selecting Logical Record Lengths and Block Sizes 419

For more information on allocating space for a data set, see DFSMS/MVS Using
Data Sets.

Figure 58 (Page 2 of 2). Control Interval Size

CI Size Device

33801 33902 93453

Notes:

1. 3380, all models
2. 3390, all models
3. 9345, all models
4. X = VSAM-selected physical record size (equal to CI-size)

420 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Abbreviations

The following abbreviations are defined as they are
used in the DFSMS/MVS library. If you do not find the
abbreviation you are looking for, see IBM Dictionary of
Computing New York: McGraw-Hill, 1994.

This list may include acronyms and abbreviations from:

� The American National Standard Dictionary for
Information Systems ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

A
ABE . Abnormal end (value of EROPT).

ABSTR . Absolute track (value of SPACE).

ACB . Access method control block (VSAM).

ACC. Accept erroneous block (value of EROPT).

ACS. Automatic class selection.

AIX. Alternate index.

AL . American National Standard labels.

AMODE. Addressing mode.

| ANSI. American National Standards Institute

AUL . American National Standard user labels (value of
LABEL).

B
BCD. Binary coded decimal.

BCDIC. Binary coded decimal interchange code.

BDAM . Basic direct access method.

BDW. Block descriptor word.

BFALN . Buffer alignment (DCB parameter).

BFTEK . Buffer technique (DCB parameter).

BLKSIZE . Block size (DCB parameter).

BLT . Block locator token.

BPAM . Basic partitioned access method.

BSAM . Basic sequential access method.

BSM. Backspace to tape mark.

BSP. Backspace one block (BSAM macro).

BSR. Backspace over a specified number of blocks
(CNTRL parameter).

BUFC. Buffer control block (VSAM).

BUFCB . Buffer pool control block (DCB parameter).

BUFL . Buffer length (DCB parameter).

BUFNO. Buffer number (DCB parameter).

BUFOFF. Buffer offset.

C
CAT. Character arrangement table.

CBIC. Control blocks in common.

CCHHR. Cylinder/head record address.

CF. Coupling facility.

CI. Control interval.

CIDF. Control interval definition field.

CONTIG. Contiguous space allocation (value of
SPACE).

CSECT. Control section.

CVOL. Control volume.

CVT. Communication vector table.

CYLOFL . Number of tracks for cylinder overflow
records (DCB parameter).

 Copyright IBM Corp. 1976, 1999 421

D
DA. Direct access (value of DEVD or DSORG).

DADSM. Direct access device space management.

DASD. Direct access storage device.

DAU. Direct access unmovable data set (value of
DSORG).

DCB. Data control block.

DCBE. Data control block extension.

DD. Data definition.

DEB. Data extent block.

DECB. Data event control block.

DEN. Magnetic tape density (DCB parameter).

DEVD. Device-dependent (DCB parameter).

DISP. Data set disposition (parameter of DD
statement).

DPI. Data protection image.

DSCB. Data set control block.

DSECT. Dummy section (also called dummy control
section).

DSORG. Data set organization (DCB parameter).

E
ECB. Event control block.

EOD. End-of-data.

EODAD. End-of-data-set exit routine address (DCB,
DCBE, and EXLST parameter).

EOKR. End-of-key range.

EOV. End-of-volume.

EROPT. Error options (DCB parameter).

ERP. Error recovery procedure.

ESA. Enterprise Systems Architecture.

ESDS. Entry-sequenced data set (VSAM).

ESETL. End sequential retrieval (QISAM macro).

ESPIE. Extended specify program interruption exits.

ESTAE. Extended specify task abnormal exit.

EXCP. Execute channel program.

EXLST. Exit list (DCB and ACB parameter).

F
FCB. Forms control buffer.

FEOV. Force end-of-volume (BSAM, QSAM macro).

FIPS. Federal Information Processing Standard.

FSM. Forward space to tape mark (CNTRL
parameter).

FSR. Forward space over a specified number of blocks
or records (CNTRL parameter).

G
GCR. Group coded recording.

GDGNT. Generation data group name table.

GEN. Generic key.

GL. GET macro, locate mode (value of MACRF).

GM. GET macro, move mode (value of MACRF).

GSR. Global shared resources.

H
HFS. Hierarchical File System

I
IDRC. Improved Data Recording Capability.

INOUT. Input then output (OPEN parameter).

IRF. Interrupt recognition flag.

IS. Indexed sequential (value of DSORG).

| ISO. International Organization for Standardization

ISU. Indexed sequential unmovable (value of DSORG).

422 DFSMS/MVS V1R5 Macro Instructions for Data Sets

J
JFCB . Job file control block.

JFCBE . Job file control block extension.

K
KEYLEN . Key length (DCB and RPL parameter).

KSDS. Key-sequenced data set (VSAM).

L
LDS. Linear data set (VSAM).

LRECL . Logical record length (DCB parameter).

LRI. Logical record interface.

LSR. Local shared resources.

M
M. Mega.

MACRF. Macro form (DCB parameter).

MBBCCHHR . Module#, bin#, cylinder#, head#,
record#.

MOD. Modify data set (value of DISP).

MSHI. Virtual storage for highest-level index (DCB
parameter).

MSWA. Virtual storage for work area (DCB
parameter).

N
NCP. Number of channel programs (DCB parameter).

| NFS. Network File System

NRZI. Nonreturn-to-zero-inverted.

NSL. Nonstandard label (value of LABEL).

NTM. Number of tracks in cylinder index for each entry
in lowest level of master index (DCB parameter).

NUP. No update.

O
OMR. Optical mark read.

| OPTCD. Optional services code (DCB and RPL
| parameter).

OUTIN. Output then input (OPEN parameter).

P
PDAB . Parallel data access block.

PDF. Problem determination function.

PDS. Partitioned data set.

PDSE. Partitioned data set extended.

PE. Phase encoding (tape recording mode).

PL. PUT macro, locate mode (value of MACRF).

PM. PUT macro, move mode (value of MACRF).

PO. Partitioned organization (value of DSORG).

POU. Partitioned organization unmovable (value of
DSORG).

PRTSP. Printer line spacing (DCB parameter).

PS. Physical sequential (value of DSORG).

PSF. Print Services Facility.

PSU. Physical sequential unmovable (value of
DSORG).

Q
QSAM. Queued sequential access method.

R
R0. Record zero.

RACF. Resource Access Control Facility.

RBA . Relative byte address.

RCW. Record control word.

RDBACK . Read backward (OPEN parameter).

RDF. Record definition field.

RDW. Record descriptor word.

 Abbreviations 423

RECFM. Record format (DCB parameter).

| RECORG. Record organization.

RKP. Relative key position (DCB parameter).

RLS. Record level sharing

RLSE. Release unused space (DD statement).

RMODE. Residence mode.

RPL. Request parameter list.

RRDS. Relative record data set (VSAM).

S
SCW. Segment control word.

SDW. Segment descriptor word.

SER. Volume serial number (value of VOLUME).

SETL. Set lower limit of sequential retrieval (QISAM
macro).

SF. Sequential forward (parameter of READ or
WRITE).

SK. Skip to a printer channel (CNTRL parameter).

SKP. Skip erroneous block (value of EROPT).

SL. IBM standard labels (value of LABEL).

SLI. Suppress length indication bit.

SMF. System management facilities.

SMS. Storage Management Subsystem or
system-managed storage.

SMSI. Size of main-storage area for highest-level
index (DCB parameter).

SMSW. Size of main-storage work area (DCB
parameter).

SP. Space lines on a printer (CNTRL parameter).

SRB. Service request block.

SS. Select stacker on card reader (CNTRL parameter).

SUL. IBM standard and user labels (value of LABEL).

SWA. Scheduler work area.

SYNAD. Synchronous error routine address (DCB and
DCBE parameter).

SYSIN. System input stream.

SYSOUT. System output stream.

T
T. Track overflow option (value of RECFM);
user-totaling (value of OPTCD).

TIOT. Task I/O table.

TRANSID. Transaction ID.

TRC. Table reference character.

TRTCH. Tape recording technique (DCB parameter).

TTR. Track record address.

U
UCB. Unit control block.

UCS. Universal character set.

UPD. Update.

V
VRRDS. Variable-length relative record data set.

VSAM. Virtual storage access method.

VSAM RLS . VSAM record level sharing

VSE. Virtual Storage Extended.

VSRT. VSAM shared resource table.

VTOC. Volume table of contents.

VVDS. VSAM volume data set.

W
WCGM. Writable character generation module.

X
XLRI. Extended logical record interface.

424 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Glossary

The following terms are defined as they are used in the DFSMS/MVS Library. If you do not find the term you are
looking for, see the IBM Software Glossary:

http://www.networking.ibm.com/nsg/nsgmain.htm

This glossary is an ever-evolving document that defines technical terms used in the documentation for many IBM
software products.

A
access method control block (ACB) . A control block that links an application program to VSAM or VTAM
programs.

| access method services . A multifunction service program that manages VSAM and non-VSAM data sets, as well as
| integrated catalog facility (ICF) and VSAM catalogs. Access method services provides the following functions:

| � defines and allocates space for VSAM data sets, VSAM catalogs, and ICF catalogs

| � converts indexed-sequential data sets to key-sequenced data sets

| � modifies data set attributes in the catalog

| � reorganizes data sets

| � facilitates data portability among operating systems

| � creates backup copies of data sets

| � assists in making inaccessible data sets accessible

| � lists the records of data sets and catalogs

| � defines and builds alternate indexes

| � converts CVOLS and VSAM catalogs to ICF catalogs

addressed-direct access . In VSAM, the retrieval or storage of a data record identified by its relative byte address
(RBA), independent of the record's location relative to the previously retrieved or stored record.

addressed-sequential access . In VSAM, the retrieval or storage of a data record in its entry sequence relative to
the previously retrieved or stored record.

addressing mode (AMODE) . An attribute of an entry point in a program that identifies the addressing range in virtual
storage which the module is capable of addressing. In 24-bit addressing mode, only 24-bit addresses can be used.

alias . An alternative name for a catalog entry or for a member of a partitioned data set (PDS).

alias entry . An entry that relates an alias to the real entry name of a user catalog or non-VSAM data set.

allocation . (1) Generically, the entire process of obtaining a volume and unit of external storage, and setting aside
space on that storage for a data set. (2) The process of connecting a program to a data set or devices.

alternate index (AIX) . A key-sequenced data set containing index entries organized by the alternate keys of its
associated base data records. It provides an alternate means of locating records in the data component of a cluster on
which the alternate index is based.

alternate key . One or more characters within a data record used to identify the data record or control its use. Unlike
the prime key, the alternate key can identify more than one data record. It is used to build an alternate index or to
locate one or more base data records via an alternate index.

application . The use to which an access method is put or the end result that it serves; contrasted to the internal
operation of the access method.

 Copyright IBM Corp. 1976, 1999 425

B
binder . The DFSMS/MVS program that processes the output of language translators and compilers into an
executable program (load module or program object). It replaces the linkage editor and batch loader in MVS

blocking . The process of combining two or more records into one block.

block size . The number of records, words, or characters in a block; usually specified in bytes.

C
catalog . A data set that contains extensive information required to locate other data sets, to allocate and deallocate
storage space, to verify the access authority of a program or operator, and to accumulate data set usage statistics.
See master catalog.

class . See SMS class.

cluster . In VSAM, a named structure consisting of a group of related components. For example, when the data is
key-sequenced, the cluster contains both the data and index components; for data that is entry-sequenced, the cluster
contains only a data component.

component . A named, cataloged collection of stored records. A component, the lowest member of the hierarchy of
data structures that can be cataloged, contains no named subsets.

compress . (1) To reduce the amount of storage required for a given data set by having the system replace identical
words or phrases with a shorter token associated with the word or phrase. (2) To reclaim the unused and unavailable
space in a partitioned data set that results from deleting or modifying members by moving all unused space to the end
of the data set.

compressed format data set . A type of extended format data set created in a data format which supports record
level compression.

configuration . (1) The arrangement of a computer system as defined by the characteristics of its functional units.
(2) See SMS configuration.

control blocks in common (CBIC) . A facility that allows a user to open a VSAM data set so the VSAM control
blocks are placed in the common service area (CSA) of the MVS operating system. This provides the capability for
multiple memory accesses to a single VSAM control structure for the same VSAM data set.

control interval (CI) . A fixed-length area of auxiliary storage space in which VSAM stores records. It is the unit of
information (an integer multiple of block size) transmitted to or from auxiliary storage by VSAM.

control interval definition field (CIDF) . In VSAM, the 4 bytes at the end of a control interval that contain the
displacement from the beginning of the control interval to the start of the free space and the length of the free space.
If the length is 0, the displacement is to the beginning of the control information.

control program . A routine, usually part of an operating system, that aids in controlling the operations and managing
the resources of a computer system.

control unit . A hardware device that controls the reading, writing, or displaying of data at one or more input/output
devices. See also storage control.

cross memory . A synchronous method of communication between address spaces.

426 DFSMS/MVS V1R5 Macro Instructions for Data Sets

D
data class . A collection of allocation and space attributes, defined by the storage administrator, that are used to
create a data set.

data extent block (DEB) . A control block that describes the physical attributes of the data set.

data record . A collection of items of information from the standpoint of its use in an application, as a user supplies it
to the system storage. Contrast with index record

data security . Prevention of access to or use of data or programs without authorization. As used in this publication,
the safety of data from unauthorized use, theft, or purposeful destruction.

data set control block (DSCB) . A control block in the VTOC that describes data set characteristics.

data synchronization . The process by which the system ensures that data previously given to the system via
WRITE, CHECK, PUT, and PUTX macros is written to some form of non-volatile storage.

device number . The reference number assigned to any external device.

DFSMS environment . An environment that helps automate and centralize the management of storage. This is
achieved through a combination of hardware, software, and policies. In the DFSMS environment for MVS, the function
is provided by DFSORT, RACF, and the combination of DFSMS/MVS and MVS.

DFSMSdfp . A DFSMS/MVS functional component or base element of OS/390, that provides functions for storage
management, data management, program management, device management, and distributed data access.

DFSMS/MVS. An IBM System/390 licensed program that provides storage, data, and device management functions.
When combined with MVS/ESA SP Version 5 it composes the base MVS/ESA operating environment. DFSMS/MVS
consists of DFSMSdfp, DFSMSdss, DFSMShsm, and DFSMSrmm.

dictionary . A table that associates words, phrases, or data patterns to shorter tokens. The tokens replace the
associated words, phrases, or data patterns when a data set is compressed.

direct access . The retrieval or storage of data by a reference to its location in a data set rather than relative to the
previously retrieved or stored data. See also addressed-direct access.

direct access device space management (DADSM) . A DFP component used to control space allocation and
deallocation on DASD.

direct data set . A data set whose records are in random order on a direct access volume. Each record is stored or
retrieved according to its actual address or its address according to the beginning of the data set. Normally accessed
via BDAM.

directly-allocated printer . A printer that is allocated to the application program.

dynamic buffering . A user-specified option that requests that the system handle acquisition, assignment, and
release of buffers.

E
entry-sequenced data set . A data set whose records are loaded without respect to their contents, and whose RBAs
cannot change. Records are retrieved and stored by addressed access, and new records are added at the end of the
data set.

ESA/370. Enterprise Systems Architecture, a hardware architecture unique to the IBM 3090 Enhanced model
processors and the 4381 Model Groups 91E and 92E. It reduces the effort required for managing data sets, removes
certain MVS/XA constraints that limit applications, extends addressability for system, subsystem, and application
functions, and helps exploit the full capabilities of SMS.

 Glossary 427

exclusive control . Preventing multiple WRITE-add BDAM requests from updating the same dummy record or writing
over the same available space on a track. When specified by the user, exclusive control requests that the system
prevent the data block about to be read from being modified by other requests; it is specified in a READ macro and
released in a WRITE or RELEX macro. When a WRITE-add request is about to be processed, the system
automatically gets exclusive control of either the data set or the track.

extended format . The format of a data set that has a data set name type (DSNTYPE) of EXTENDED. The data set
is structured logically the same as a data set that is not in extended format but the physical format is different. See
also striped data set and compressed format.

extent . A continuous space on a DASD volume occupied by a data set or portion of a data set.

F
field . In a record or control block, a specified area used for a particular category of data or control information.

format-D . ASCII variable-length records.

format-DB . ASCII variable-length, blocked records.

format-DBS . ASCII variable-length, blocked spanned records.

format-DS . ASCII variable-length, spanned records.

format-F . Fixed-length records.

format-FB . Fixed-length, blocked records.

format-FBS . Fixed-length, blocked, standard records.

format-FS . Fixed-length, standard records.

format-U . Undefined-length records.

format-V . Variable-length records.

format-VB . Variable-length, blocked records.

format-VBS . Variable-length, blocked, spanned records.

format-VS . Variable-length, spanned records.

free space . Space reserved within the control intervals of a key-sequenced data set for inserting new records into
the data set in key sequence or for lengthening records already there; also, whole control intervals reserved in a
control area for the same purpose.

G
gigabyte . 1 073 741 824 bytes.

H
header label . (1) An internal label, immediately preceding the first record of a file, that identifies the file and contains
data used in file control. (2) The label or data set label that precedes the data records on a unit of recording medium.

| hierarchical file system (HFS) data set . See OS/390 UNIX data set.

HFS. see hierarchical file system

428 DFSMS/MVS V1R5 Macro Instructions for Data Sets

Hiperspace . A high performance virtual storage space of up to two gigabytes. Unlike an address space, a
Hiperspace contains only user data and does not contain system control blocks or common areas; code does not
execute in a Hiperspace. Unlike a data space, data in a Hiperspace cannot be referenced directly; data must be
moved to an address space in blocks of 4KB before they can be processed. The 4K blocks can be backed by
expanded storage or auxiliary storage, but never by virtual storage. The Hiperspace used by VSAM is only backed by
expanded storage. See also Hiperspace buffer.

Hiperspace buffer . A 4K-byte-multiple buffer which facilitates the moving of data between a Hiperspace and an
address space. VSAM Hiperspace buffers are only backed by expanded storage.

I
indexed VTOC . A volume table of contents with an index that contains a list of data set names and free space
information, which allows data sets to be located more efficiently.

index record . In VSAM, a collection of index entries retrieved and stored as a group.

integrated catalog facility catalog . A catalog that is composed of a basic catalog structure (BCS) and its related
volume tables of contents (VTOCs) and VSAM volume data sets (VVDSs). See also basic catalog structure and
VSAM volume data set.

K
key-sequenced data set (KSDS) . A VSAM data set whose records are loaded in ascending key sequence and
controlled by an index. Records are retrieved and stored by keyed access or by addressed access, and new records
are inserted in key sequence because of free space allocated in the data set. Relative byte addresses of records can
change because of control interval or control area splits.

keyed sequential access . In VSAM, the retrieval or storage of a data record in its key or relative-record sequence,
relative to the previously retrieved or stored record as defined by the sequence set of an index.

kilobyte . 1024 bytes.

L
library . Synonym for partitioned data set. See partitioned data set.

linear data set (LDS) . A VSAM data set that contains data but no control information. A linear data set can be
accessed as a byte-addressable string in virtual storage.

load module . The output of the linkage editor; a program in a format ready to load into virtual storage for execution.
Contrast with program object.

locate mode . A transmittal mode in which a pointer to a record is provided instead of moving the record. Contrast
with move mode.

M
management class . A collection of management attributes, defined by the storage administrator, used to control the
release of allocated but unused space; to control the retention, migration, and backup of data sets; to control the
retention and backup of aggregate groups, and to control the retention, backup, and class transition of objects.

member . A partition of a partitioned data set or PDSE.

move mode . A transmittal mode in which the record to be processed is moved into a user work area.

MVS/DFP. An IBM licensed program which is the base for the Storage Management Subsystem.

 Glossary 429

MVS/ESA. An MVS operating system environment that supports ESA/390.

MVS/ESA SP. An IBM licensed program used to control the MVS operating system. MVS/ESA SP together with
DFSMS/MVS compose the base MVS/ESA operating environment. See also OS/390.

N
non-VSAM data set . A data set allocated and accessed using one of the following methods: BDAM, BPAM, BISAM,
BSAM, QSAM, QISAM.

O
object . A named byte stream having no specific format or record orientation.

| OpenEdition MVS . See OS/390 UNIX System Services

operand . Information entered with a command name to define the data on which a command operates and to control
the execution of the command.

optimum block size . For non-VSAM data sets, optimum block size represents the block size that would result in the
smallest amount of space utilization on a device, taking into consideration record length and device characteristics.

P
partitioned data set (PDS) . A data set on direct access storage that is divided into partitions, called members, each
of which can contain a program, part of a program, or data.

partitioned data set extended (PDSE) . A system-managed data set that contains an indexed directory and
members that are similar to the directory and members of partitioned data sets. A PDSE can be used instead of a
partitioned data set.

path . A named, logical entity composed of one or more clusters (an alternate index and its base cluster, for
example).

PDS directory . A set of records in a partitioned data set (PDS) used to relate member names to their locations on a
DASD volume.

pointer . An address or other indication of location. For example, an RBA is a pointer that gives the relative location
of a data record or a control interval in the data set to which it belongs.

primary space allocation . Amount of space requested by a user for a data set when it is created. Contrast with
secondary space allocation.

prime key . One or more characters within a data record used to identify the data record or control its use. A prime
key must be unique.

program library . A type of PDSE which contains program objects only. A PDSE from which programs are loaded
into memory for execution by the operating system.

program object . All or part of a computer program in a form suitable for loading into virtual storage for execution.
Program objects are stored in PDSE program libraries and have fewer restrictions than load modules. Program objects
are produced by the binder.

430 DFSMS/MVS V1R5 Macro Instructions for Data Sets

R
random access . See direct access.

record definition field (RDF) . A field stored as part of a stored record segment; it contains the control information
required to manage stored record segments within a control interval.

record level sharing . See VSAM Record Level Sharing (VSAM RLS).

register . An internal computer component capable of storing a specified amount of data and accepting or transferring
this data rapidly.

relative byte address (RBA) . The displacement of a data record or a control interval from the beginning of the data
set to which it belongs; independent of the manner in which the data set is stored.

relative record data set (RRDS) . A type of VSAM data set whose records have fixed or variable lengths, and are
accessed by relative record number.

RLS. See VSAM Record Level Sharing (VSAM RLS).

residence mode (RMODE) . The attribute of a load module that identifies where in virtual storage the program will
reside (above or below 16 megabytes).

reusable data set . A VSAM data set that can be reused as a work file, regardless of its old contents. It must not be
a base cluster of an alternate index.

S
scheduling . The ability to request that a task set should be started at a particular interval or on occurrence of a
specified program interrupt.

secondary space allocation . Amount of additional space requested by the user for a data set when primary space
is full. Contrast with primary space allocation.

security . See data security.

sequence checking . The process of verifying the order of a set of records relative to some field's collating
sequence.

sequential access . The retrieval or storage of a data record in: its entry sequence, its key sequence, or its relative
record number sequence, relative to the previously retrieved or stored record. See also addressed-sequential access
and keyed-sequential access.

sequential data set . A data set whose records are organized on the basis of their successive physical positions,
such as on magnetic tape. Contrast with direct data set.

service request block (SRB) . A system control block used for dispatching tasks.

shared resources . A set of functions that permit the sharing of a pool of I/O-related control blocks, channel
programs, and buffers among several VSAM data sets open at the same time.

skip-sequential access . Keyed-sequential retrieval or storage of records here and there throughout a data set,
skipping automatically to the desired record or collating position for insertion: VSAM scans the sequence set to find a
record or a collating position. Valid for processing in ascending sequences only.

slot . For a fixed-length relative record data set, the data area addressed by a relative record number which may
contain a record or be empty.

SMS class . A list of attributes that SMS applies to data sets having similar allocation (data class), performance
(storage class), or backup and retention (management class) needs.

 Glossary 431

SMS configuration . A configuration base, Storage Management Subsystem class, group, library, and drive
definitions, and ACS routines that the Storage Management Subsystem uses to manage storage. See also base
configuration and source control data set.

SMS-managed data set . A data set that has been assigned a storage class.

spanned record . For VSAM, a logical record whose length exceeds control interval length, and as a result, crosses,
or spans one or more control interval boundaries within a single control area. For non-VSAM, a spanned record that
occupies part or all of more than one block.

storage class . A collection of storage attributes that identify performance goals and availability requirements, defined
by the storage administrator, used to select a device that can meet those goals and requirements.

storage control . The component in a storage subsystem that handles interaction between processor channel and
storage devices, runs channel commands, and controls storage devices.

storage group . A collection of storage volumes and attributes, defined by the storage administrator. The collections
can be a group of DASD volumes or tape volumes, or a group of DASD, optical, or tape volumes treated as a single
object storage hierarchy. See also VIO storage group, pool storage group, tape storage group, object storage group,
object backup storage group, and dummy storage group.

Storage Management Subsystem (SMS) . A DFSMS/MVS facility used to automate and centralize the management
of storage. Using SMS, a storage administrator describes data allocation characteristics, performance and availability
goals, backup and retention requirements, and storage requirements to the system through data class, storage class,
management class, storage group, and ACS routine definitions.

stripe . In DFSMS/MVS, the portion of a striped data set that resides on one volume. The records in that portion are
not always logically consecutive. The system distributes records among the stripes such that the volumes can be read
from or written to simultaneously to gain better performance. Whether it is striped is not apparent to the application
program.

striping . A software implementation of a disk array that distributes a data set across multiple volumes to improve
performance.

system-managed storage . Storage managed by the Storage Management Subsystem. SMS attempts to deliver
required services for availability, performance, and space to applications. See also DFSMS environment.

system management facilities (SMF) . A component of MVS/ESA SP that collects input/output (I/O) statistics,
provided at the data set and storage class levels, which helps you monitor the performance of the direct access
storage subsystem.

T
transaction ID (TRANSID) . A number associated with each of several request parameter lists that define requests
belonging to the same data transaction.

U
unit address . The last two hexadecimal digits of a device address. This identifies the storage control and DAS
string, controller, and device to the channel subsystem. Often used interchangeably with control unit address and
device address in System/370 mode.

universal character set (UCS) . A printer feature that permits the use of a variety of character arrays. Character
sets used for these printers are called UCS images.

update number . For a VSAM spanned record, a binary number in the second RDF of a record segment that
indicates how many times the segments of a spanned record should be equal. An inequality indicates a possible error.

432 DFSMS/MVS V1R5 Macro Instructions for Data Sets

user buffering . The use of a work area in the processing program's address space for an I/O buffer; VSAM
transmits the contents of a control interval between the work area and direct access storage without intermediary
buffering.

V
virtual storage access method (VSAM) . An access method for direct or sequential processing of fixed and
variable-length records on direct access storage devices. The records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the physical sequence in which they are written on the data set or
file (entry sequence), or by relative record number.

VSAM record-level sharing (VSAM RLS) . An extension to VSAM that provides direct record-level sharing of VSAM
data sets from multiple address spaces across multiple systems. Record-level sharing uses the System/390 Coupling
Facility to provide cross-system locking, local buffer invalidation, and cross-system data caching.

VSAM volume data set (VVDS) . A data set that describes the characteristics of VSAM and system-managed data
sets residing on a given DASD volume; part of an integrated catalog facility catalog. See also basic catalog structure
and integrated catalog facility catalog.

 Glossary 433

434 DFSMS/MVS V1R5 Macro Instructions for Data Sets

 Index

Numerics
16MB line

31-bit exit routine above 169
24-bit addressing mode 165
31-bit addressing mode 165, 167

RMODE31 for ACB 18
RMODE31 for DCBE 262

31-bit exit routine
above the 16MB line 169

3262 Model 5 printer
COPYP parameter 342

3420 Magnetic Tape Units
block capacity 414

3430 Magnetic Tape Units
block capacity 414

3480 Magnetic Tape Subsystem
block capacity 414

3490 Magnetic Tape Subsystem
block capacity 414
Enhanced Capability Models

block capacity 414
3525 Card Punch

BSAM print option 223
closing data sets 182
opening associated data sets 308
QSAM print option 250
read and print control 188

3800 Model 3 printer 232
3800 Model 3 printer PSF libraries (for example,

SYS1.FONTLIB, 339
3800 Printer 339
3890 Document Processor 188
4248 printer

COPYP parameter 342
SETPRT macro 340

A
A-type address constant

defined 163
ABEND

condition analysis 207
exit routine

BSAM 224
QSAM 253

abnormal termination
end-of-data xv

See also EODAD
uncorrectable I/O error xv

See also SYNAD

above the 16MB line
31-bit exit routine 169

absexp 163
absolute expression 163
ACB (access method control block)

access method specification 40
closing 31
copies 41
data set processing parameters 15, 42, 115
displaying fields 101, 102
error flag code 134
exit list 15
generation

assembly time 12
GENCB macro 39

index buffer allocation 40
macro

access method 391
data set processing 20
parameters 12, 20, 43

modifying 66
status information 102
storage location 43
symbolic address 13
testing a field 113
work area 44

access method
BDAM 191
BISAM 198
BPAM 203
BSAM 212
QISAM 232
QSAM 241
volume positioning 308

acronyms 421
actual track address

QISAM 237
address

DECB for FREEDBUF 285
feedback

current block position 328
next block position 328

indirect 8
addressed-direct

retrieval 62
update 84

addressed-sequential
addition 80
deletion 36
retrieval 59

addressing mode
24-bit 165

 Copyright IBM Corp. 1976, 1999 435

addressing mode (continued)
31-bit 165
BDAM options 196
non-VSAM macros 159

alias name
directory 359

aligning printer forms
manual 344

alternate index
base cluster processing 22
shared buffers 22
unique keys 115
upgrade set 138

ANSI control characters
BSAM 230
ISO/ANSI defined 408
QSAM 258

ASCII
block prefix 217
conversion routines

procedures 386
PUT macro 323
QSAM records 288
virtual storage 386
write 380

data sets
BSAM 215
DB or DBS 244, 246
QSAM 246
special characters 217
variable-length tape records 230

tape records
block prefix 216

associated data sets
specifying

BSAM 222, 223
QSAM 250, 252

asynchronous
request

canceling 34
return codes 138

automatic
buffer pool construction

QISAM 232
QSAM 241

automatic error options 252
See also EROPT

automatic volume switching 282

B
backward read

read operation 332
base register

macro expansion 164

basic partitioned access method xv
See also BPAM

basic sequential access method xv
See also BSAM

BDAM (basic direct access method)
data set processing options 196
DCB construction 191
macros 391
RECFM 197

BDW (block descriptor word)
BLKSIZE parameter

BPAM 205
BSAM 215
QISAM 234
QSAM 244

specifying 217
BFALN parameter 199
BISAM (basic indexed sequential access method)

data set processing options 199, 201
DCB construction 198
macros 391
symbolic field names in DCB 401
work area 202

BLDL macro
access method 391
description 170
return and reason codes 173

BLDVRP macro
access method 391
execute form 26
list form 26
return codes 154
standard form 21

block
adding

BDAM 382
BISAM 378
BPAM 380

count exit
BSAM 224
QSAM 253

data event control 393
extended search option 195
last one written or read 305
length 246
position feedback 315, 377
positioning with POINT 315
prefix

block length 215
buffer length 246
data alignment 243

QSAM 258
reading 327
replacing

BISAM 378
BSAM 380

436 DFSMS/MVS V1R5 Macro Instructions for Data Sets

block (continued)
simulated, backspacing 174
size

DASD data set 205, 216, 245
QSAM 245
SYSOUT data set 244
tape data set 216, 245

standard 258
system-determined

DASD data set 205
tape data set 216

writing 376
block descriptor word xv

See also BDW
blocking

data checks (UCS printer) 347
records

BSAM 230
QISAM 239

BPAM (basic partitioned access method)
backspacing a physical record 173
DCB construction 203
error analysis routine 210
LRECL 208
MACRF 209
macros 391
processing options 209
RECFM 210
symbolic field names for DCB 395

BSAM (basic sequential access method)
backspacing a physical record 173
DCB construction 212
device types 218
macros 391
printer control 188
record conversion 180
record processing 215
symbolic field names for DCB 394

BSP macro
access method 391
description 173
HFS files 174
OS/390 UNIX files 174
return and reason codes 175

buffer
control

FREEBUF macro 285
exclusive control, releasing 71
forms control, SETPRT macro 339
index allocation 40
invalidation 71
length

ASCII data sets 216, 246
card image mode 216, 245
determining 176

marking for output 71

buffer (continued)
message format (SYNADAF macro) 366
number specified 193
obtaining from a pool 291
pool

address 177, 193
BISAM parameters 199
boundary alignment 199
buffer length 177
building 291
construction 177
control block address 199
format 176
Hiperspace 21
logical record interface 177
releasing storage 285, 286
virtual 21

pool construction 176
releasing

RELSE macro 337
SYNADRLS macro 369

reuse 180
search 92
segment work area 194
shared 22
shared status, releasing 71
VSAM

space allocation 14
writing 122

buffering
user 18
variable-length spanned record

QSAM 243
BUILD macro

access method 391
buffer

length 199
pool control block address 199

buffer number 193
buffer pool address 193
description 176

BUILDRCD macro
access method 391
BUFL parameter 246
execute form 179
list form 178
standard form 177

C
card

codes
BSAM 220
QSAM 249

image
binary column 222
BSAM, eliminate mode 222

 Index 437

card (continued)
image (continued)

buffer length required 216, 245
defined 220
mode 221, 249
QSAM, eliminate mode 250

punch 220, 249, 414
reader 221, 250, 414

carriage control
channel

specifying 188
characters

machine 407
overflow, printer 320

catalog
entry

interrelationships 94
information retrieval 93
object classes 94
record control interval numbers 94
search order 94

CCSID
conversion routines

CHECK macro 180
chained scheduling

BPAM 209
BSAM 228
QSAM 256

channel overflow 320
channel programs

number
BPAM 209
BSAM 226

suppress length indication (SLI) 342
character arrangement table

specifying 341
character set code 347
CHECK macro

access method 391
EODAD routine 224
HFS files 180
NCP operations 226
non-VSAM 179
OS/390 UNIX files 180
overlap processing 28
reason codes 137
return codes 137, 138
synchronizing PDSE to DASD 180
VSAM 27, 29

checkpoint
embedded records

POINT macro 317
checkpoint/restart 182
CHKPT macro 182
CLOSE

macro
example 187, 188

CLOSE macro
access method 391
execute form (non-VSAM) 187
HFS files 183
list form (non-VSAM) 185
OS/390 UNIX files 183
parameters 30
reason codes 131
return codes 131, 187
standard form

non-VSAM 182
VSAM 30

temporary close option 30
CNTRL macro

access method 391
description 188
format 189
MACRF parameter

BSAM 226
CNVTAD macro

return and reason codes 139
codes

card
BSAM 221

conversion
EBCDIC to/from ASCII 380

exception 393
coding an exit routine

above the 16MB line 169
column, binary xv

See also card image
compaction, data

using COMP operand 219, 248
completion codes

BLDL macro 173
BSP macro 175
DESERV macro 276
FIND macro 284
ISITMGD macro 300
MSGDISP macro 304
NOTE macro 307
POINT macro 319
RELEX macro 336
STOW macro 362
SYNADAF macro 366
SYNADRLS macro 369
WRITE macro 384

completion testing of I/O operations 374
component

code 138
COMPRESS, parameter 115
compressed data set

control interval processing 87
concurrent data set access 50
concurrent data set positioning 43

438 DFSMS/MVS V1R5 Macro Instructions for Data Sets

condition, exception 393
constructs

DECB 393
continuation lines 165
control

block xv
See also ACB
DCB field names 394
DCBD macro 260
DECB format 393
macro return and reason codes 135
macros 3
updating 122

characters
description 407
ISO/ANSI 408
machine 407
specifying for BPAM 209
specifying for BSAM 230
specifying for QSAM 258

interval
access 16
processing 16
releasing 33

control interval
size

DASD 419
conversion

ASCII to/from EBCDIC
QSAM records 288
XLATE macro 386

BSAM records 181
EBCDIC to/from ASCII

PUT macro 323
WRITE macro 380
XLATE macro 386

ISO/ANSI record control word 409
ISO/ANSI segment control word 410
paper tape code 220

copy modification module
specifying 345

count exit, block
QSAM 253

cylinder
DCB macro 235
index 237
overflow area 235

D
D-format records

BSAM 230
QSAM 258

DASD (direct access storage device)
backspacing a physical record 173
capacity 413

DASD (direct access storage device) (continued)
data set

last block 306
interface in DCB 399
physical characteristics 414
POINT macro 315
SYNCDEV macro 370
synchronizing PDSEs 180
system-determined block size 205, 216, 245
track capacity 414
VSAM usage

3380 416
3390 417
9345 418

data
access block, parallel 314
block

exclusive control 196
locating 196

buffers
allocating 40

check 257
component buffers, invalidating 71
conversion xv

See also code conversion
event control block xv

See also DECB
protection image xv

See also DPI
resource pool 25

data block
exclusive control 328
locating 315
release of exclusive control 336
writing 322, 376

data check
blocking and unblocking 346

data compaction
using COMP operand 219, 248

data control block
BDAM 191
BISAM 198
BPAM 203
BSAM 212
QISAM 232
QSAM 241

Data Conversion
CHECK macro 180

data definition statement xv
See also DD statement

data management
parameter list 185, 312
remote parameter list 314

data mode processing
GET macro 255
PUT macro 255, 325

 Index 439

data set
access method

non-VSAM 159, 167
processing parameters 42
VSAM 3

adding
variable-length records 80

attributes
testing 116

BDAM functions, specifying 196
BISAM processing options 199
block size for SYSOUT 244
BPAM processing options 196, 209
checkpoint entry 182
closing

non-VSAM 182
temporary 30
VSAM 30, 31

concurrent
access 50
positioning requests 43

connecting 307
device types 261
direct

BDAM addressing options 196
DCB 191

indexed sequential
creating 198
processing options 202

key length 23
last block 305
opening 72, 307
organization, specifying 194, 207
partitioned

DCB 203
record loading

PUT macro 74
reusable 17
sequential

DCB 212, 241
processing options 213

skip-sequential access 16
temporary close

non-VSAM 184
VSAM 30

unmovable 194, 207, 223, 235, 252
verification 122

data transmittal modes
data 290, 325
DCB 255
locate 287, 289, 322, 324
move 287, 289, 323, 325

DCB (data control block)
ABEND exit

BDAM 194
BPAM 207
BSAM 224

DCB (data control block) (continued)
ABEND exit (continued)

QSAM 253
completing 307
data event 329, 393
DCBLRECL field 323, 398, 399, 404
dummy control section 260
fields 394
interface 399
JFCB 311
key length 194
macro 194

access methods 391
constructing for BDAM 191
constructing for BISAM 198
constructing for BPAM 203
constructing for BSAM 212
constructing for QISAM 232
constructing for QSAM 241
data set processing options 196
device types, BSAM 218
direct data set addressing 196
error analysis routine 198, 203
exit list for BDAM 194
exit list for BISAM 200
exit list for BPAM 207
exit list for BSAM 224
exit list for QISAM 236
exit list for QSAM 253
processing options 196, 201, 202

macro map 260
opening, errors 312
symbolic references 260

DCB macro
BLKSIZE operand 413
LRECL operand 413

DCBD macro
access method 391
description 260
dummy control section 260

DCBE macro
access method 391
description 261

DD statement
dynamic allocation 167

deblocking records
BSAM 230
QISAM 239

DECB (data event control block)
address specified for FREEDBUF 285
construction 334, 385
description 393
exception code 393
modifying 335, 386

Default Character Conversion
conversion routines

CHECK macro 180

440 DFSMS/MVS V1R5 Macro Instructions for Data Sets

DESERV (directory services)
macro 266

DESERV macro
access method 391
reason codes 276
return codes 276

device
capacities 413
estimating bytes available 414
type

BSAM 218
DEVD parameter (DCB macro) 218
in a dummy section 261

direct
processing positioning state 147

direct access
volume

closing temporarily 184
demounting 183

direct data set xv
See also BDAM
BDAM processing options 196
buffer

obtaining 291
pool, building 291
releasing dynamic 285
releasing pool storage 286
releasing to pool 285

closing 182
DCB map 260
opening 307
READ macro 327, 333
RELEX 336
WRITE macro 376, 382

direct search option
QSAM 257

directly-allocated printer
page format 320
spacing 320

directory
entry list fields 172
partitioned data set

contents 170
STOW macro 358

PDSE
contents 170
STOW macro 358

directory entry services
DESERV macro 266
macro 266

DLVRP macro
access method 391
execute form 32
parameters 31
return codes 154
standard form 31

DOS (disk operating system) xv
See also VSE (Virtual Storage Extended)

DPI (data protection image)
BSAM 222, 223
QSAM 250, 251

DSECT statement 394
dummy

control section
DCB 394
PDABD macro 315

data block 383
key 383

dynamic
allocation 167
buffering

buffer length 193
READ macro 328, 330
releasing pool storage 286
returning buffer to pool 285, 377
WRITE macro 377, 378

dynamic string extension 19

E
EBCDIC (extended binary coded decimal interchange

code)
ASCII conversion

BSAM records 181
GET routine 288
PUT routine 323
WRITE routine 380
XLATE macro 386

ASCII translation
DCB option 256

ECB (event control block)
description 374, 393

eliminate mode, read column
BSAM 222
QSAM 250, 251

embedded checkpoint records
OPTCD=H for BSAM 230
OPTCD=H for QSAM 258
POINT macro 317

end-of-data xv
See also EODAD

end-of-sequential retrieval 282
See also ESETL

ENDREQ macro
access method 391
description 33
reason codes 137
return codes 137, 138

EOD (end-of-data)
synchronizing 121

EODAD (end of data) routine
BSAM 224

 Index 441

EODAD (end-of-data) routine
address, displaying 108
BPAM 207
DCBE 262
exit testing 117, 118
EXLST macro 37
FEOV 282
GET 287, 290
POINT macro 317
QISAM 235
QSAM 252

EOV (end-of-volume)
exit

BSAM 224
QSAM 253

forcing 282
restriction with HFS file 308
return codes 155

ERASE macro
access method 391
description 34
return and reason codes 137

EROPT (automatic error options)
DCB macro 252

ERP (error recovery procedure)
magnetic tape 257
QSAM 257

error
analysis

BDAM 198
BISAM 203
BPAM 210
permanent I/O 363
QISAM 239
QSAM 257, 259

exits
DCB macro 230
EXLST for BISAM 200
EXLST for BPAM 207
EXLST for BSAM 224
EXLST for QISAM 236
EXLST for QSAM 253
EXLST parameter (BDAM) 194
logical 37
physical 37
SYNADAF macro 363

recovery procedure
magnetic tape 230

ESDS (entry-sequenced data set)
access types 16
addressed access 16
record

addressed-direct retrieval 62
deletion 84
insertion 80
update 83

ESDS (entry-sequenced data set) (continued)
retrieving records

addressed-sequential 59
ESETL (end-of-sequential retrieval) macro

access method 391
description 282
SETL macro 337

event control block xv
See also ECB

exclusive control of data block
releasing 377
requesting 328

EXCP (execute channel program)
macro

SYNADAF macro 363
exit list

address 48
assembly time generation 37
BDAM 194
copies 47
displaying

address 107
fields 107
length 108

error analysis 47
example 38
generation 46, 48
length 118
modification 67
testing a field 116
work area 48

exit routine
above the 16MB line 169
address specification 41
EXLST parameter 253
values 37

EXLST macro
access method 391
description 37
exit routine values 37

extended addressing
GET macro 91
MRKBFR macro 71, 91
POINT macro 91
SCHBFR macro 91, 93
WRTBFR macro 91, 122
XADDR parameter 115
XRBA in RPL 91

extended binary coded decimal interchange code xv
See also EBCDIC

extended format data set
BSP macro 173
CHECK macro 179
CLOSE macro 182
CLOSE TYPE=T 185
DCBE macro 261

442 DFSMS/MVS V1R5 Macro Instructions for Data Sets

extended format data set (continued)
message buffer format 366
SAM 31-bit 369
specifying DCBE parameter

BPAM 206
BSAM 218
QSAM 247

specifying NCP parameter
BPAM 209
BSAM 226

SYNADAF macro 364
extended logical record interface xv

See also XLRI
extended search option

locating data blocks 196
relative track addressing 195
specifying blocks or tracks 195

F
F-format records xv

See also RECFM
FCB (forms control buffer)

defining an image 224, 253
EXLST parameter 224, 253
identifying 343
in-storage address 343

feedback
block position 328, 377
next address 329

FEOV macro
access method 391
description 282

FIELDS parameter 102
file system

restriction with OPEN 308
FIND macro

access method 391
description 283
reason codes 284
return codes 284

fixed-length RRDS xiv
See also relative record data set

FLASH parameter
specifying SETPRT macro 344

FREEBUF macro
access method 391
description 285

FREEDBUF macro
access method 391
BISAM 379
description 285

FREEPOOL macro
access method 391
description 286

full-track-index write option 238

G
GENCB macro

ACB generation 39
access method 391
chaining RPLs 53
example 44, 45, 48
execute form 9, 56
exit list generation 46
generate form 10, 11, 56
list form 8, 55
parameter expressions 7
reason codes 135
reentrant environment 11
return codes 135
RPL generation 49

generate form
keyword 10
MODCB macro 70
SHOWCB macro 112

generic key 61
search argument 51

GET macro
access method 391
data mode, QSAM 255, 287
description

QISAM 237, 286
QSAM 255, 287
VSAM 56

exit routines 290
locate mode

QISAM 237, 287
QSAM 255, 289

move mode
CNTRL macro 255
QISAM 237, 287
QSAM 255, 289

number of DCBs 314
reason codes 137
record conversion 288
retrieving VSAM records 56, 64
return codes 137
search argument reason codes 146
XLRI mode 290

GETBUF macro
access method 391
description 291
releasing a buffer 285

GETIX macro
format 411
return and reason codes 137

GETPOOL macro
access method 391
buffer

boundary alignment 199

 Index 443

GETPOOL macro (continued)
buffer (continued)

length 200
description 291
releasing buffer pool storage 286

glue routine
above the 16MB line 169

GSR (global shared resources)
pool, requesting 24
resource pool deletion 31
VSAM macros 17

H
HFS data set

end-of-volume processing 308
restriction on opening 308

HFS file
processing, BLKSIZE 215, 244
restriction with end-of-volume 308

HFS files
and EROPT 253
BFTEK=A restriction 243
BLKSIZE restriction 214
BSP macro 174
buffer acquisition 246
CHECK macro 180
CLOSE macro 183
GETSIZE parameter 263
ISITMGD macro 297
KEYLEN restriction 224
LRECL default 225
MULTACC parameter 265
MULTSDN parameter 265
NOTE macro 305
OPEN macro 308, 311
POINT macro 316
READ macro 331
RECFM restriction 231, 259
recommendation 245
RELSE macro 337
restriction 226, 244
specifying 223
SYNADAF macro 368
SYNCDEV macro 370
TRUNC macro 374
user totaling 229
user totaling restriction 257
validity checking 229, 257

Hiperspace buffer
number 21, 22
size 21

I
I/O

3505 card reader
DCB macro 222, 250, 251

3525 card punch
DCB macro 222, 250, 251

buffers
real storage 22

completion testing
CHECK macro 27, 179
WAIT macro 374

device
control 188

IDALKADD macro
description

VSAM 64
IDRC (Improved Data Recording Capability)

using COMP operand 219, 248
IEWLCNVT macro

convert directory entries 293
description 292
return and reason codes 296

IGGSHWPL macro 95
IGWCISM macro 297
IHADCB dummy section 260
IHADCBE macro

access method 391
IHADCBE mapping macro 261
IHAPDAB dummy section 315
IHAPDS 293
image

card
BSAM 221
QSAM 249

data protection
BSAM 222, 223
QSAM 250, 251

FCB 224, 253, 343
UCS (universal character set) 347

independent overflow area 238
index

buffer
allocation 40
invalidating 71

ISAM cylinder
creating master indexes 237

ISAM master
OPTCD parameter 237
tracks per level 237

processing macros 411
resource pool

example 25
requesting 24

retrieval 411
storing 412

444 DFSMS/MVS V1R5 Macro Instructions for Data Sets

indexed sequential data set
buffer

obtaining 291
pool, building 291
releasing dynamic 285
releasing pool storage 286
releasing to pool 285

closing 182
DCB map 260
ending sequential retrieval 282
ISAM cylinder

creating master indexes 237
ISAM master

OPTCD parameter 237
ISAM parameter

tracks per level 237
next logical record 286
opening 307
PUT macro 322
PUTX macro 326
QISAM 232
READ macro 329
SETL macro 337
WRITE macro 378

input data set
opening 307
READ or GET specified in DCB

BSAM 226
QISAM 237
QSAM 255

reading
BDAM 327
BISAM 329
BPAM 331
direct data set 333
sequential data set 332

testing completion of I/O operations
CHECK macro 179
WAIT 374

input/output devices xv
See also I/O

insert strategy 17
integrated catalog facility catalog

information retrieval 93
IOB

fixing in real storage 22
LSR buffer storage 23

ISAM (indexed sequential access method) xv
See also BISAM, QISAM
description 233
macros 391
master index 237
NTM parameter 237
symbolic field names in DCB 401

ISITMGD macro
access method 391

ISITMGD macro (continued)
description 297
execute form 300
HFS files 297
list form 299
OS/390 UNIX files 297
return and reason codes 300

ISO/ANSI
control characters

specifying 408

J
JFCB (job file control block)

DCB initialization 311
JFCBE (job file control block extension)

EXLST parameter 253
OPTCD parameter 230

job step
checkpoint restart 182

journalizing transactions
exit 37

JRNAD exit routine
address, displaying 108
exit testing 117

K
key

BDAM
address 329
reading 327
writing 377

direct deletion 35
generic 61
generic search argument 51
ISAM

address 330, 379
length 236
position 239
reading 330
writing 378

non-unique 62
record

PUT macro 322
READ macro 329
retrieval 56
RKP parameter 239
SETL macro 337
WRITE macro 379

keyed
access

I/O buffers 13, 40
KSDS (key-sequenced data set)

access
addressed 16
keyed 16

 Index 445

KSDS (key-sequenced data set) (continued)
access (continued)

types 16
addressed deletion 36
erasing 34
inserting records

keyed-direct 80
skip-sequential 79

loading records 75
prime key length 23
record

deleting 36
retrieval 56, 58, 64

retrieving records
addressed-direct 62
keyed-direct 61
skip-sequential 58

updating records
keyed-direct 82
keyed-sequential 81

L
labels

input data set 257, 307
output data set

CLOSE macro 182
creating 307

user, processing 253
LERAD exit routine

address, displaying 108
exit testing 117

line spacing, printer
PRTSP parameter

BSAM 220
QSAM 249

locate mode
PUT macro

QSAM 324
QISAM DCB MACRF 237
QISAM PUT 322
QSAM DCB MACRF 255

lock
record for RLS.

IDALKADD macro (VSAM) 64
logical

errors
positioning following 147
reason codes 140

record length
BPAM DCB LRECL 208
BSAM DCB LRECL 225
QISAM for DCB LRECL 236
QSAM DCB LRECL 253

logical record interface xv
See also LRI

LRI (logical record interface)
DCB macro 243
PUT macro 323
QSAM 244
variable-length spanned record 177

LSR (local shared resources)
buffer search 92
buffer storage 23
buffer, writing 122
IOB residence 23
local resource pool 17
pool, requesting 24
resource pool deletion 31, 32

M
machine control characters

described 407
QSAM 258

MACRF parameter
ACB 15
BDAM DCB 196
BISAM DCB 201
BPAM DCB 209
BSAM DCB 226
GENCB macro 42
index buffer allocation 41
MODCB macro 66
options 15
password specification 18
QISAM DCB 237
QSAM DCB 255
TESTCB macro 115

macro
BAL or BALR instruction 164
data set processing types 15
DCB 413
expansion 164
forms 8
operand specified as register 164
register requirements 164
TRKCALC 414

macros,
DESERV 266

macros, data management
ACB 12
access method 391
BISAM 329
BLDL 170
BLDVRP 21
BSP 173
BUILD 176
BUILDRCD 177
CHECK

non-VSAM 179
VSAM 27

446 DFSMS/MVS V1R5 Macro Instructions for Data Sets

macros, data management (continued)
CHKPT 182
CLOSE 30
CLOSE (non-VSAM) 182
CNTRL 188
DCB

BDAM 191
BISAM 198
BPAM 203
BSAM 212
QISAM 233
QSAM 242

DCBD 260
DCBE 261
DLVRP 31
ENDREQ 33
ERASE 34
ESETL 282
EXLST 37
FEOV 282
FIND 283
format 162
FREEDBUF 285
FREEPOOL 286
GENCB 39
GET

QISAM 286
QSAM 287
VSAM 56

GETBUF 291
GETIX 411
GETPOOL 291
IDALKADD

VSAM 64
IEWLCNVT 292
ISITMGD 297
MODCB 66
MRKBFR 71
MSGDISP 301
notational conventions 5, 161
NOTE 305
OPEN

non-VSAM 307
VSAM 72

PDAB 314
PDABD 315
POINT

non-VSAM 315
VSAM 73

PRTOV 320
PUT

QISAM 322
QSAM 323
VSAM 74

PUTIX 412
PUTX 326

macros, data management (continued)
READ

BDAM 327, 333
BPAM 331
BSAM 331

RELEX 336
RELSE 337
return and reason codes

VSAM 125, 156
RPL 85
SCHBFR 92
SETL 337
SETPRT 339, 355
SHOWCAT 93
SHOWCB 101
STOW 358
SYNADAF 363
SYNADRLS 369
SYNCDEV 370
TESTCB 113
TRUNC 373
VERIFY 121
WAIT 374
WRITE

BDAM 376, 382
BISAM 378
BPAM 380
BSAM 380
list form 385

WRTBFR 122
XLATE 386

magnetic tape
backspacing a physical record 173, 188
closing data sets 183
CNTRL macro 188
density 219, 248
end-of-file, ignored 230
forward space 188
interface in DCB 400
POINT macro 317
reading backward 310, 332
recording technique 219, 248
sequential data sets, closing temporarily 184
shortened error recovery procedure 230, 257
volume positioning 282
volume positioning options

CLOSE 183
CNTRL 188
OPEN 310
POINT 317

magnetic tape drive
control 188

magnetic tape volumes
disposition 184
positioning

load point 183

 Index 447

mapping macros
DCB mapping 260
DCBD macro 260
DCBE macro 261
PDABD 315

master index
address 201
highest level 202
option 237
tracks per level 237

member
partitioned data set

update directory 358
PDSE

update directory 358
messages

area 133
area header 132
display macro 301
length 134
list 133
OPEN/CLOSE 132

MF=E keyword 9
MF=L keyword 9
MNTACQ macro

return and reason codes 139
MODCB macro

ACB modification 66
access method 391
chaining RPLs 53
example 67
execute form 9, 12, 70
generate form 10, 70
list form 8, 70
parameter expressions 7, 66
reason codes 135
remote-list form 11
return codes 135
RPL modification 68

move mode
QISAM

DCB 237
QISAM PUT 323
QSAM DCB MACRF 255
QSAM PUT 325

MRKBFR macro
access method 391
description 71
return and reason codes 137
RPL parameters 71

MSGDISP macro
description 301
execute form 303
list form 302
return and reason codes 304

multiline print option
BSAM 221, 223
QSAM 250, 251

multiple
error conditions 132

N
NCP parameter

BPAM 209
BSAM 226

next address feedback
BDAM 383

NLOGR parameter 105
nocapture, option of dynamic allocation 167, 308
non-unique

alternate key 62
non-VSAM

macro
addressing mode 159
selection 159, 167

NOTE macro
access method 391
DCB macro

BPAM 305
BSAM 226

description 305
HFS files 305
OS/390 UNIX files 305
return and reason codes 307

NUIW parameter 105

O
OMR (optical mark read) mode

BSAM 222
QSAM 251

online printer
CNTRL macro 188
skipping 407
spacing 320, 407

open exit xv
See also DCB

OPEN macro
access method 391
examples 73
HFS files 311
non-VSAM

execute form 314
list form 312
standard form 307

OS/390 UNIX files 308, 311
parameter list above 16MB example 73
restriction with HFS data set 308
return codes 125, 312
VSAM format 72

448 DFSMS/MVS V1R5 Macro Instructions for Data Sets

OpenEdition MVS files
NOTE macro 305

OPTCD parameter
BDAM 196
BISAM 202
BPAM 209
BSAM 230
QISAM 238
QSAM 255

optical
mark read mode xv

See also OMR
option codes xv

See also OPTCD
OS/390 UNIX files

BSP macro 174
CHECK macro 180
CLOSE macro 183
ISITMGD macro 297
OPEN macro 308, 311
POINT macro 316
READ macro 331
RELSE macro 337
SYNADAF macro 368
SYNCDEV macro 370
TRUNC macro 374

output data set
opening 307
WRITE or PUT

BSAM 226
QISAM 237
QSAM 255

writing
allocate a direct data set 382
BDAM 376
BISAM 378
BPAM 380
BSAM 380
QISAM 322, 326
QSAM 323

overflow
area 238
channel 320
exit address 320
printer carriage 320
track

BDAM 197
BSAM 231
QSAM 258

overlay frame 344
overprinting 321

P
parallel data access block xv

See also PDAB

parameter list
31-bit addresses 185
construction

CLOSE macro 185
POINT macro 319
READ macro 334
SETPRT macro 353
variable length spanned record 178
WRITE macro 385

data management 185, 312
length 9
long form 185, 311
maximum length 312
MF=L keyword 9
modification

MF=E keyword 9
READ macro 335
SETPRT macro 355
variable-length spanned records 179
VSAM macros 8
WRITE macro 386

reentrant environment 10
remote 8, 314
remote generation 10
shared 10
simple 8

partitioned data set
backspacing a physical record 173
buffer

obtaining 291
pool, building 291
releasing pool storage 286
releasing to pool 285

creating 204
DCB address 171
DCB map 260
directory

information 171
last block 305
locating members 283
macros 391
opening 307
positioning for access 315
processing member

BSAM 212
QSAM 241

processing options 204
PUT macro 323
STOW macro 358
using BPAM 203
WRITE macro 380

path
base cluster access 13

PDAB (parallel data access block)
construction 314
generating a DSECT 315

 Index 449

PDAB (parallel data access block) (continued)
macro

access methods 391
description 314

symbolic field names 315
PDABD macro

access method 391
symbolic field names 315

PDS Directory Entry (PDSDE)
directory entry conversion 292

PDSE (partitioned data set extended)
BLDL macro 171
block

size, BSAM 215
buffer

obtaining 291
pool, building 291
releasing pool storage 286
releasing to pool 285

connecting to a member
BLDL macro 171
FIND macro 283
POINT macro 316

creating 204
DCB map 260
directory

functions 358
information 171

directory entry services 266
key lengths

BPAM 208
BSAM 224

last block 305
LRECL 208
macros 391
opening 307
POINT macro 316
processing member

BSAM 212
QSAM 241

processing options 204
PUT macro 323
record

processing 205
specifying BLKSIZE

QSAM 244
status 297
STOW macro 358
SYNADAF macro 367
SYNCDEV macro 370
synchronizing to DASD 180, 370
TRUNC macro restriction 373
using BPAM 203
WRITE macro 381

physical errors
request macro reason codes 149

POINT macro
access method 391
example 74
execute form 320
HFS files 316
list form 319
MACRF parameter

BSAM 226
non-VSAM format 315
OS/390 UNIX files 316
positioning 147
reason codes 137, 319
return codes 137, 319
search argument reason codes 146
subsystem files 316
subsystem MVS files 316
VSAM format 73

position feedback
current block 377
next block 383

positioning
volumes

CLOSE macro 183
CNTRL macro 188
magnetic tape 282
OPEN macro 307
POINT macro 315

prefix, block
block length 215

print option for 3525
BSAM 222

Print Services Facility xv
See also PSF

printer
carriage control 320
carriage control channel 188
character set buffer loading 347
control

characters 407
information 339
tape 320

directly allocated 320
forms

alignment 339
control buffer, loading 343

line spacing 188
skipping 188, 407
spacing 188, 407

printers
record length 413

program library 159
Program Management Attribute Record (PMAR)

directory entry conversion 292
program object 159
program, channel

BSAM 226

450 DFSMS/MVS V1R5 Macro Instructions for Data Sets

protection option, data
BSAM 222, 223
QSAM 251

PRTOV macro
access method 391
description 320

PSF (Print Services Facility)
libraries 339
SYNAD routine 232

punch, card 221, 249
PUT macro

access method 391
addressed-sequential update 83
data mode, QSAM 255, 325
keyed-direct

insertion 80
update 82

keyed-sequential
insertion 75, 78
update 81

loading fixed-length RRDS 76
locate mode

QISAM 323
QSAM 324

marking records inactive 84
move mode

QISAM 322
QSAM 325

return and reason codes 137
skip-sequential insertion 79
VSAM format 74

PUTIX macro
format 412
return and reason codes 137

PUTX macro
access method 391
description 326
output mode 327
update mode 327

Q
QISAM (queued indexed sequential access method)

DCB construction 232
ending sequential retrieval 282
macros 391
symbolic field names in DCB 401

QSAM (queued sequential access method)
3890 Document Processor 188
buffer pool, building 177
description 241
macros 391
printer control 188
symbolic field names in DCB 394

R
RBA (relative byte address)

physical error control interval 149
recording 75
WRTBFR macro 123

RDW (record descriptor word)
conversion 409

READ
BISAM 329

READ macro
access method 391
EODAD parameter 224
execute form 335
extended search option 195
HFS files 331
list form 334
MACRF parameter

BPAM 209
BSAM 225

maximum number 209
NCP parameter 226
OpenEdition MVS files 331
specifying 209
standard form

BDAM 327, 333
BISAM 329
BPAM 331
BSAM 331

starting point 283
read-column-eliminate mode

BSAM 222
QSAM 250, 251

reason codes
BLDL macro 173
BSP macro 175
CLOSE macro 131
control block macro return codes 135
DESERV macro 276
FIND macro 284
IEWLCNVT macro 296
ISITMGD macro 300
logical errors 140
MSGDISP macro 304
NOTE macro 307
OPEN macro 125
physical errors 149
POINT macro 319
positioning state 147
RPL feedback area 137, 139
SETPRT macro 351
STOW macro 362
SYNADAF macro 366
SYNCDEV macro 373
VSAM macros 137

 Index 451

RECFM (record format)
BDAM options 197
BPAM options 209
BSAM options 230
deriving 198
parameter

BSAM 230
QISAM options 239
QSAM options 258

record
adding

BISAM 378
next, QSAM 288
variable length 80

area
construction 177, 331
deletion option 238

class 61
deleting 34
descriptor word

BSAM 217
QISAM 234

format xv
See also RECFM

inactive 84
insertion

addressed-sequential 80
keyed-direct 80
keyed-sequential 75, 78, 81
skip-sequential 79

length xv
See also LRECL

loading
fixed-length RRDS 76
KSDS 75

management
reason codes 137
return codes 137

next logical 286, 287
pointing to 73
relative byte address 75
replacing, BISAM 378
retrieval

GET macro (QISAM) 286
GET macro (QSAM) 287
GET macro (VSAM) 56
READ macro 327
READ MACRO (BISAM) 329
READ macro (BPAM) 331
READ macro (BSAM) 331
skip sequential 58
variable-length records 58

segment 323
skip-sequential insertion 79
updating 81, 82, 326, 376, 380, 382
writing 74, 322, 376

recording
density

magnetic tape, BSAM 219
technique

magnetic tape, BSAM 219
recovery

tape error 230
reentrant program

execute form 12
macro coding 7
remote-list form 11
RPL 11
shared parameter lists 11

register
address mode 164
contents

overflow exit routine 321
DCBD base 260
notation 7
operand specified as 164
usage rules 164

relative
addressing 284
track address

extended search option 195
specifying 197

RELEX macro
access method 391
description 336
return codes 336

relocatable expression 164
RELSE macro

access method 391
HFS files 337
OpenEdition MVS files 337
using 337

request
asynchronous 34
terminating 33

request macros
functions 3

resource sharing 13
restore data control block 183
restriction

end-of-volume with HFS file 308
nocapture option of dynamic allocation 308
opening HFS data set 308

return codes
asynchronous request 138
BLDL macro 173
BLDVRP macro 154
BSP macro 175
CHECK macro 137
CLOSE macro 131, 187
CNVTAD macro 139
control block macro 135

452 DFSMS/MVS V1R5 Macro Instructions for Data Sets

return codes (continued)
DESERV macro 276
DLVRP macro 154
end-of-volume 155
ENDREQ macro 137
ERASE macro 137
FIND macro 284
GET macro 137
GETIX macro 137
ISITMGD macro 300
MNTACQ macro 139
MRKBFR macro 137
MSGDISP macro 304
NOTE macro 307
OPEN macro 125, 312
POINT macro 137, 319
PUT macro 137
PUTIX macro 137
RELEX macro 336
RPLRTNCD 137
SCHBFR macro 137
SETPRT macro 347
shared resources macros 153
SHOWCAT macro 155
STOW macro 362
SYNADRLS macro 369
SYNCDEV macro 373
synchronous request 138
WRITE macro 384
WRTBFR macro 137

RETURN macro
SYNAD parameter 259

BSAM 232
QISAM 240, 408

RLS (record level sharing)
VSAM macros 18

RLS.
record locking

IDALKADD macro (VSAM) 64
RLSREAD, ACB parameter 20, 43
RPL (request parameter list)

ACB address 50, 85
access method 391
chaining

building 53
example 53
GET macro 60, 64
multiple record access 50
next address 52

component code 138
condition code 137, 138
copies 50
displaying

fields 109
message 111

feedback area 137, 139

RPL (request parameter list) (continued)
FIELDS parameter 110
GENCB macro 50
generation

assembly time 85
example 54
execution time 49

macro
description 85
example 91
processing options 87
spanned VSAM records limitation 89
work area 85

modifying 68
positioning 64
reentrant environment 11
request parameters 52
search argument address 50, 86
status 109
test processing options 120
testing 119, 120
work area

address 52
length 50
specifying 51

RRDS (relative record data set)
access types 16
allocation 77
erasing 34
inserting records

keyed-direct 80
keyed-sequential 75, 78
skip-sequential 79

keyed access 16
loading 76
retrieving records

fixed length 60
keyed-direct 61
keyed-sequential 56
variable length 58

updating records
keyed-direct 82
keyed-sequential 81

S
S-type address constant

indirect 8
indirect address 7

SCHBFR macro
access method 391
description 92
return and reason codes 137
RPL parameters 93

SDW (segment descriptor word)
conversion 410

 Index 453

search
argument

BDAM 196
QISAM 237

direct option 209, 228, 257
extended option 195

segment
buffer 322

sequential
processing positioning state 147

sequential access methods xv
See also access methods

sequential data set
buffer

obtaining 262, 291
pool, building 291
releasing pool storage 286
releasing to pool 285

buffer pool 177
closing 182
DCB macro processing options 213
DCB map 260
end-of-volume condition 282
GET macro 287
last block 305
next logical record 287
opening 307
PDAB 314
positioning for access 315
PUT macro 323
PUTX macro 326
QSAM 241
READ macro 331
RELSE macro 337
TRUNC macro 373
WRITE macro 380

services, optional
BSAM 228

SETL macro
access method 391
description 337

SETPRT macro
4248 printer 340
access method 391
blocking/unblocking data checks 339
bypassing automatic forms positioning 339
execute form 355
list form 353
printing by print train or band 339
reason codes for 3800 351
return codes 347
selecting UCS and FCB images 339
standard form 339

shared
buffer pool 176
buffer, releasing 71

shared (continued)
parameter lists 8, 10
resources

control blocks 13
macro return codes 153
pool 23

SHOWCAT macro
catalog entry interrelationships 94
description 93
execute form 99
list form 99
operand expressions 100
parameter list 99
return codes 155
standard form 95
work area 95

SHOWCB macro
access method 391
description 101
examples 106
execute form 9, 112
exit list fields 107
fields 102
generate form 10, 112
list form 8, 111
parameter expressions 7
reason codes 135
return codes 135
RPL status fields 109

simple buffering
BFTEK parameter 243

skip-sequential
inserting records 79
processing positioning state 147
retrieving records 58
types of data sets accessed 16

skipping, printer
See also spacing, printer
control characters 407

SMS (Storage Management Subsystem)
data set

status 297
spacing, printer

See also skipping, printer
BSAM 220
control characters 407

spanned records xv
See also variable-length, spanned records

STACK parameter
QSAM 250

stacker selection
CNTRL macro 188
control characters 407
DCB macro

BSAM 221, 222
QSAM 250, 251

454 DFSMS/MVS V1R5 Macro Instructions for Data Sets

statistics
reorganization 238

STOW macro
access method 391
directory action 361
reason codes 362
return codes 362
update directory

partitioned data set 358
PDSE 358

subsystem files
POINT macro 316

subsystem MVS files
POINT macro 316

suppress length indication (SLI)
channel programs 342

SYNAD exit routine
address, displaying 108
DCB macro

BPAM 210
BSAM 232
QISAM 239

DCBE macro 263
exit testing 117
PSF (Print Services Facility) 232

SYNADAF macro
access method 391
description 363
HFS files 368
message format 366
OpenEdition MVS files 368
reason codes 366

SYNADRLS macro
access method 391
description 369
return and reason codes 369

SYNCDEV macro
access method 391
HFS files 370
OS/390 UNIX files 370
return and reason codes 373
synchronizing data

DASD 370
tape 370

synchronizing data
compressed format data set 370
DASD 358, 370
PDSE 370
tape 370

synchronizing I/O operations 374
synchronous request 138
system-determined block size

BPAM 205
BSAM 216
DASD data set 216, 245
QSAM 245

system-determined block size (continued)
tape data set 216, 245

system-managed data set xiv
See also SMS (Storage Management Subsystem)

T
table reference character xv

See also TRC
tape

data set
synchronizing 370
system-determined block size 216

error recovery procedure
BSAM 230
QSAM 257

magnetic
density 219
QSAM 248

positioning 283
recording technique 219
records, block prefix 215
spacing 188
volume

disposition 310
tape data set

system-determined block size
QSAM 245

temporary close 184
temporary close

VSAM 30
TESTCB macro

ACB processing parameters 115
access method 391
branch table 118
data set attributes 116
description 113
error routine exit 114
execute form 9, 121
exit list 116
generate form 10, 121
list form 8, 120
parameter expressions 7
reason codes 135
request parameter list 119
return codes 135

totaling exit
BSAM 224
QSAM 253

track
addressing

FIND macro 284
relative 197

capacity 414
extended search option 195
index

write option 238

 Index 455

track (continued)
maximize use of 414
overflow

BDAM 197
BPAM 210
BSAM 231
chained scheduling 258
OPTCD parameter 258
QSAM 258

record address 316
See also TTR

transmittal modes
data 255, 325
locate 324
move 322, 325
specifying 237

TRC (table reference character, 3800) 228, 256, 345
TRKCALC macro 414
TRUNC macro

access method 391
description 373
HFS files 374
OS/390 UNIX files 374
QSAM DCB 255

TTR (track record address)
last block 305
partitioned data set 172
PDSE 172

U
U-format records

BDAM 198
BSAM 231
QSAM 258

UCB
nocapture option of dynamic allocation 308

UCS (universal character set)
parameter (SETPRT macro) 347
unblocking data checks 257

unblocking data checks
QSAM 257
SETPRT macro 346

undefined length records xv
See also U-format records

universal character set xv
See also UCS

user
data in partitioned data set directory 358
label exit

BSAM 224
QSAM 253

processing exit 37
totaling 229, 257
totaling exit

BSAM 224
QSAM 253

user buffering 18
USING statement

PDABD macro 315

V
V-format records

BDAM 198
BSAM 231
QISAM 239
QSAM 259

validation
written records 197

variable-length
record xv

See also V-format records
spanned records

See also V-format records
buffer pool, building 177
data set allocation 192
record segments 323
retrieving 288, 289
writing to data set 383

tape records
ASCII 230

VERIFY macro
access method 391
description 121

virtual storage
converting data 386

volume
forcing end 282
positioning

CLOSE macro 183
OPEN macro 307
POINT macro 315

switching
automatic 282

VRRDS (variable-length relative record data set)
inserting records

keyed-direct 80
keyed-sequential 75
skip-sequential 79

retrieving records
skip-sequential 58

updating records
keyed-direct 82

VSAM (virtual storage access method)
ACB generation 39
addressing mode 3
catalog

information retrieval 93
data set

macro processing 3
opening 72

dynamic string extension 19

456 DFSMS/MVS V1R5 Macro Instructions for Data Sets

VSAM (virtual storage access method) (continued)
I/O buffers 13
macros

execute form 9
generate form 10
list form 8
parameter expressions 7
return codes 125
shared resource return codes 153
types 3

OPEN storage 18
parameter list 8
record

deleting 34
resource pool

building 21
deletion 31

RLSREAD, ACB parameter 20, 43
VSAM Avoid LSR exclusive control wait 17
VSE (Virtual Storage Extended)

embedded checkpoint records
POINT macro 317

VSE (Virtual System Extended)
embedded checkpoint records

VSE/MVS interchange feature, specifying 230,
258

W
WAIT macro

access method 391
description 374
synchronizing PDSE to DASD 375

wait state 179
WRITE macro

access method 391
allocate direct data set 382
BDAM 376
BISAM 378
BPAM 381
BSAM 225, 381
compressed format data set 381
execute form 386
extended search option 195
list form 385
MACRF parameter 226
maximum number 209
NCP parameter 226
return codes 384
specifying 209
standard form 376, 384
synchronizing PDSE to DASD 381
testing for completion 374

WRTBFR macro
access method 391
description 122

WRTBFR macro (continued)
return and reason codes 137

X
XADDR, parameter 115
XLATE macro

access method 391
description 386

XLRI (extended logical record interface) 177
GET macro 290
QSAM 254

XRBA, RPL extended addressing parameter 91

U.S.A.

 Index 457

Readers' Comments — We'd Like to Hear from You

DFSMS/MVS Version 1 Release 5
Macro Instructions for Data Sets

Publication No. SC26-4913-04

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-4913-04 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/M86 050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SC26-4913-04

IBM

File Number: S370/S390-30
Program Number: 5695-DF1
 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-4913-ð4

Spine information:

IBM DFSMS/MVS Version 1 Release 5 Macro Instructions for Data Sets

